FPGA2-采集OV5640乒乓缓存后经USB3.0发送到上位机显示

1.场景

基于特权A7系列开发板,采用OV5640摄像头实时采集图像数据,并将其经过USB3.0传输到上位机显示。这是验证数据流能力的很好的项目。其中,用到的软件版本,如下表所示,基本的硬件情况如下。该项目对应FPGA工程源码,qt工程源码,以及USB固件的下载地址

软件版本
QT5.15.0
Vivado2020.2
FX3 SDK1.3.4

器件

型号

厂商

FPGA

XLNX-XC7A35T-FTG256

赛灵思

DDR3

MICT-MT41K128M16JT-96

镁光

USB控制芯片

CYUSB3014-BZXI

赛普拉斯

摄像头

OV5640

豪威科技

 2.架构

如图,所示为该小项目的基本架构。其硬件部分由摄像头采集模组、DDR3存储芯片、FPGA芯片、USB控制芯片组成。软件部分包括FPGA数据采集处理代码、CYUSB3014应用固件、QT上位机软件三个部分组成。其中,FPGA数据采集处理代码主要包含了摄像头配置模块(含图示SCCB驱动)、摄像头数据捕获模块、DDR3读写控制模块、图像数据编码模块、USB读写控制模块;CYUSB应用固件包括下行USB控制传输模式实现、上行块传输模式实现两个部分;QT上位机包括USB通信模块和图像数据解码模块,RGB565图像数据显示模块。

项目实现了将采集得到的图像数据,经过USB传输线,传输至上位机进行画面实时显示的功能。具体为:①FPGA摄像头配置模块通过SCCB接口驱动协议完成摄像头的寄存器配置,使之DVP接口产生正确信号;②FPGA摄像头数据捕获模块通过DVP接口采集实时图像数据;③FPGA DDR3读写控制模块将采集到底数据先存入DDR3缓冲,并将数据从DDR3读出至数据编码模块;④FPGA数据编码模块对图像数据进行编码,做加入帧头的操作(暂时没做);⑤FPGA USB读写控制模块产生USB控制芯片的读写信号,将图像数据发送到USB控制芯片;⑥CYUSB3014应用固件通过块传输的传输模式,将图像数据发送至上位机;⑦上位机USB通信模块用于读取USB的传输数据;⑧上位机图像解码模块用于将读取到的编码过的图像数据进行解码;⑨上位机RGB565图像显示模块将解码得到的像素数据进行显示。最终完成了将摄像头采集到的图像数据进行实时显示的功能。

3.FPGA技术点

3.1SCCB协议

与IIC总线非常接近,可参考FPGA IIC接口通信

SCCB(Serial Camera Control Bus,串行摄像头控制总线)是由OV(OmniVision的简称)公司定义和发展的三线式串行总线,该总线控制着摄像头大部分的功能,包括图像数据格式、分辨率以及图像处理参数等。该协议是兼容IIC协议的。为了节约管脚,OV公司采用的都是两线是类似于IIC的时钟线SIO_C和数据线SIO_D。                                                                                     

SSCB协议描述:

  1. Start传输开始标志:在时钟线SIO_C为高电平期间,SIO_D完成从高到低的跳变,代表着传输开始。
  2. Stop传输结束标志:在时钟线SIO_C为高电平期间,SIO_D由低到高完成跳变,代表着传输结束。
  3. 传输时序写:传输开始+ID Addr+R编号+数据DATA+传输结束

        ID ADDRESS是由7位器件地址和1位读写控制位构成(0:写 1:读);上图中的第9位X表示Don’t Care(不必关心位),该位是由从机(此处指摄像头)发出应答信号来响应主机表示当前ID Address、Sub-address和Write Data是否传输完成,但是从机有可能不发出应答信号,因此主机(此处指FPGA)可不用判断此处是否有应答,直接默认当前传输完成即可.Sub-address为8位寄存器地址,在摄像头的数据手册中定义了0x00~0xAC共173个寄存器(大概数),有些寄存器是可改写的,有些是只读的,只有可改写的寄存器才能正确写入。WriteData为8位写数据,每一个寄存器地址对应8位的配置数据

        4.传输时序读:传输开始+相1(ID ADDR)+相2(寄存器编号)+结束传输

  • 第一部分是写器件地址和寄存器地址,即先进行一次虚写操作,通过这种虚写操作使地址指针指向虚写操作中寄存器地址的位置,当然虚写操作也可以通过前面介绍的写传输协议来完成。其中ID Address代表的是期间地址,bit0为0(写)。Sub—address代表是寄存器地址。
  • 第二部分是读器件地址(ID Address bit0为1代表读)和读数据(Read Data),此时读取到的数据才是寄存器地址对应的数据。上图中的NA位由主机(这里指FPGA)产生,由于SCCB总线不支持连续读写,因此NA位必须为高电平。

3.2OV5640模组

与多数主流CMOS图像传感器一样,OV5640通过寄存器配置工作参数,方式就是SCCB协议,寄存器的内容很多,下面讲几个关键的,其余可查阅手册了解使用。

1.图像窗口设置

 

ISP 输入窗口设置(ISP Input Size)允许用户设置整个传感器显示区域(physical pixel size,2632*1951,其中 2592*1944 像素是有效的),开窗范围从 0*0~2632*1951 都可以任意设置。也就是上图中的 X_ADDR_ST(寄存器地址 0x3800、0x3801)、Y_ADDR_ST(寄存器地址 0x3802、0x3803)、X_ADDR_END(寄存器地址 0x3804、0x3805)和 Y_ADDR_END(寄存器地址 0x3806、0x3807)寄存器。该窗口设置范围中的像素数据将进入 ISP 进行图像处理。

ISP(Image Signal Processor),即图像处理,主要作用是对前端图像传感器输出的信号做后期处理,主要功能有线性纠正、噪声去除、坏点去除、内插、白平衡、自动曝光控制等,依赖于ISP才能在不同的光学条件下都能较好的还原现场细节,ISP技术在很大程度上决定了摄像机的成像质量。

预缩放窗口设置(pre-scaling size)允许用户在 ISP 输入窗口的基础上进行裁剪,用于设置将进行缩放的窗口大小,该设置仅在 ISP 输入窗口内进行 X/Y 方向的偏移。可以通过 X_OFFSET(寄存器地址 0x3810、0x3811)和 Y_OFFSET(寄存器地址 0x3812、0x3813)进行配置。

输出大小窗口设置(data output size)是在预缩放窗口的基础上,经过内部 DSP 进行缩放处理,并将处理后的数据输出给外部的图像窗口,图像窗口控制着最终的图像输出尺寸。可以通过 X_OUTPUT_SIZE(寄存器地址 0x3808、0x3809)和 Y_OUTPUT_SIZE(寄存器地址 0x380A、0x380B)进行配置。注意:当输出大小窗口与预缩放窗口比例不一致时,图像将进行缩放处理(图像变形),仅当两者比例一致时,输出比例才是 1:1(正常图像)。

右侧 data output size 区域,才是 OV5640 输出给外部的图像尺寸,也就是显示在显示器或者液晶屏上面的图像大小。输出大小窗口与预缩放窗口比例不一致时,会进行缩放处理,在显示器上面看到的图像将会变形。

实际配置的图像分辨率中,将3808=0x02 3809=0x80,0x0280=10’640;   380a=01 380b=e0,0x01e0=480。

2.输出图像格式设置

OV5640 支持多种不同的数据像素格式,包括 YUV(亮度参量和色度参量分开表示的像素格式)、RGB(其中 RGB 格式包含 RGB565、RGB555 等)以及 RAW(原始图像数据),通过寄存器地址 0x4300 配置成不同的数据像素格式。将寄存器 0x4300 寄存器的 Bit[7:4]设置成 0x6 ,将寄存器 0x4300 寄存器的 Bit[3:0]设置成0x1即可将输出像素格式设置为RGB565。

3.3DVP接口

DVP接口就是digital video port的简称,即数字视频端口。常见的视频采集接口有LVDS、MIPI,DVP是速度较慢的并行传输的接口,在高速的传感器上已经很少能见到该接口了,下面简单介绍一下DVP,下图为VGA帧的DVP接口时序图和接口管脚图。

 

说明1:不同的分辨率,上图中的每一个上升沿和每一个下降沿的时间是固定的,时间的单位是tp(指的是输出一个时钟像素数据所需要的时间),当配置摄像头的输出格式为8位raw时,tp=tPCLK,当为YUV\RGB的时候,tp=2*tPCLK。因此输出一帧图像所需要的时间与tPCLK是息息相关的。而决定像素时钟PCLK的是XCLK(控制芯片输出给驱动sensor的时钟)与寄存器的配置。因此,决定摄像头输出的帧频大小取决于XCLK与相关时钟倍频寄存器的配置。

说明2:时序关系,当场同步信号的有效信号到来时,开始一帧数据的传输,当行同步的有效信号到来时,开始一行数据的传输,每行数据之间有传输间隔,帧与帧之间除了包含480个行同步有效信号外还有其他的数据无效时间。

VSYNC:场同步信号,由摄像头输出,用于标志一帧数据的开始与结束。上图中VSYNC的高电平作为一帧的同步信号,在低电平时输出的数据有效。需要注意的是场同步信号是可以通过设置某寄存器进行取反的,即低电平同步高电平有效。

HREF/HSYNC:行同步信号,由摄像头输出,用于标志一行数据的开始与结束。上图中的HREF和HSYNC是由同一引脚输出的,只是数据的同步方式不一样。本次实验使用的是HREF格式输出,当HREF为高电平时,图像输出有效,可以通过寄存器进行配置。

D[9:0]:数据信号,由摄像头输出,在RGB格式输出中,只有高8位D[9:2]是有效的;

XCLK:控制芯片输出给驱动sensor的时钟。

PCLK:像素时钟,每一个时钟输出一个或者半个像素数据。

SCL、SDA :IIC(SCCB)用来配置sensor寄存器的接口。

3.4DDR3读写接口

参考DDR3应用总结

DDR3读写接口使用的赛灵思的MIG IP核。为了匹配DDR3的读写速度,使用两个FIFO用于写入DDR3和读出DDR3。由于该平台设计中,读出DDR3的速度大约是USB3.0的传输速度(实测平均速度在370MB/s),远远大于摄像头的数据输出速度(不超过50MB\s)。故使用乒乓操作切换两块缓冲区,每一块缓冲区大小为一帧图像的大小;对于写操作,写完第一块缓冲区bank1之后,就切换到第二块缓冲区bank2继续写;由于读取速度大于写入速度,因此当读完bank1之后,去当前没有写操作的bank中读取数据;可能产生同一帧图片读取多次的情况,但保证了用户在上位机正常观看画面。

3.5 USB3.0接口

    参考USB3.0赛普拉斯方案

上行数据流使用块传输模式传输实时像素数据,实际测试。平均速度可达370MB\s。

4.QT技术点

多线程 参考QThread线程创建与使用

QT工程代码粘贴如下:

主线程图像显示代码Raw_Usb,app:

#include "raw_usb.h"
#include "ui_raw_usb.h"
#include <mythread.h>
#include <QThread>
#include <QDebug>
#include <QImage>
#include <QPixmap>

Raw_Usb::Raw_Usb(QWidget *parent)
    : QWidget(parent)
    , ui(new Ui::Raw_Usb)
{
    ui->setupUi(this);
    ui->label_Show->resize(640,480);
    connect(ui->startBtn,&QPushButton::clicked,this,&Raw_Usb::SlotStart);
    connect(ui->stopBtn,&QPushButton::clicked,this,&Raw_Usb::SlotStop);
    //链接线程中的数据来更新界面的图像显示
    connect(thr,&MyThread::refreshUi,this,&Raw_Usb::responseUi,Qt::BlockingQueuedConnection);
}

Raw_Usb::~Raw_Usb()
{
    delete ui;
}
void Raw_Usb::SlotStart()
{
    thr->start();
    ui->startBtn->setEnabled(false);
    ui->stopBtn->setEnabled(true);
}
void  Raw_Usb::SlotStop()
{
    if(thr->isRunning())
    {
    thr->stop();
    ui->startBtn->setEnabled(true);
    ui->stopBtn->setEnabled(false);
    }
}
//成熟槽函数,接收内存区指针来显示图片
void Raw_Usb::responseUi(uchar * addrBuf)
{ 
   QPixmap pix;
   QImage img=QImage(addrBuf,640,480,QImage::Format_RGB16);
   pix=pix.fromImage(img);
   ui->label_Show->setPixmap(pix);
}

子线程数据接收代码mythread.app

#include "mythread.h"
#include <QDebug>
#include <CyAPI.h>
#include <raw_usb.h>
#include <QFile>
#include <QImage>
#include <QPixmap>
#include <QByteArray>
#include <QTimer>
MyThread::MyThread(QObject *parent) :
    QThread(parent)
{
    stopped = false;
}

void MyThread::run()
{
    /*创建设备对象,通过发送带参信号Cam_Data_Usb显示USB设备相关信息*/
    CCyUSBDevice *Cam_Data_Usb=new CCyUSBDevice;    //创建一个设备对象
    /*******************USB设备相关准备工作**************************/
    uchar *recieve_Buffer=new uchar[640*480*2];     //定义接收缓存,FPGA--上位机,输入in
    LONG recieveLen =640*480*2;                     //定义函数参数字节长度
    bool flag_Recieve;                              //定义bool型标志
    UCHAR buik_Recieve = 0x81;                      //定义bulk传输发送接收端点
    for (int i=0;i< Cam_Data_Usb->DeviceCount(); i++) {
        Cam_Data_Usb->Open(i);                      //准备工作就绪,开启第i号设备
    } 
    CCyUSBEndPoint *recieve_Endpt=Cam_Data_Usb->EndPointOf(buik_Recieve);//指定端点,使能传输
    while(!stopped) {
         flag_Recieve=recieve_Endpt->XferData(recieve_Buffer, recieveLen);//使能接收
         if(flag_Recieve){
             emit; refreshUi(recieve_Buffer);
         }
    }
    delete Cam_Data_Usb;
    delete []recieve_Buffer;//使用完之后释放内存空间
    stopped = false;
}

void MyThread::stop()
{
    stopped=true;
}

MyThread::~MyThread()
{
}

 

 5.效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/55488.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

机器学习-特征选择:如何使用Lassco回归精确选择最佳特征?

一、引言 特征选择在机器学习领域中扮演着至关重要的角色&#xff0c;它能够从原始数据中选择最具信息量的特征&#xff0c;提高模型性能、减少过拟合&#xff0c;并加快模型训练和预测的速度。在大规模数据集和高维数据中&#xff0c;特征选择尤为重要&#xff0c;因为不必要的…

windows基础命令

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一.目录和文件的操作 1.cd 命令 切换到d盘 2.目录分为相对路径和绝对路径 3. dir命令 用于显示目录和文件列表 4. md 或 mkdir 创建目录 5. rd 用于删…

LeetCode·每日一题·822. 翻转卡片游戏·哈希

作者&#xff1a;小迅 链接&#xff1a;https://leetcode.cn/problems/card-flipping-game/solutions/2368969/ha-xi-zhu-shi-chao-ji-xiang-xi-by-xun-ge-7ivj/ 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 著作权归作者所有。商业转载请联系作者获得授权&#xff…

ChatGPT | 分割Word文字及表格,优化文本分析

知识库读取Word内容时&#xff0c;由于embedding切片操作&#xff0c;可能会出现表格被分割成多个切片的情况。这种切片方式可能导致“列名栏”和“内容栏”之间的Y轴关系链断裂&#xff0c;从而无法准确地确定每一列的数据对应关系&#xff0c;从而使得无法准确知道每一列的数…

RabbitMQ 教程 | 第2章 RabbitMQ 入门

&#x1f468;&#x1f3fb;‍&#x1f4bb; 热爱摄影的程序员 &#x1f468;&#x1f3fb;‍&#x1f3a8; 喜欢编码的设计师 &#x1f9d5;&#x1f3fb; 擅长设计的剪辑师 &#x1f9d1;&#x1f3fb;‍&#x1f3eb; 一位高冷无情的编码爱好者 大家好&#xff0c;我是 DevO…

02 笔记本电脑m.2硬盘更换

1 工具展示 SN570的2T硬盘。够用了。 对于这台华为&#xff0c;使用的螺丝刀批头是4或5毫米的六边形批头。如果出现打滑的情况&#xff0c;请不要用蛮力哦。 2 更换过程 使用螺丝刀拧走后盖的螺丝&#xff08;为了避免会出问题要再次打开&#xff0c;我到现在还没有把螺丝拧回…

每日一题8.2 2536

2536. 子矩阵元素加 1 给你一个正整数 n &#xff0c;表示最初有一个 n x n 、下标从 0 开始的整数矩阵 mat &#xff0c;矩阵中填满了 0 。 另给你一个二维整数数组 query 。针对每个查询 query[i] [row1i, col1i, row2i, col2i] &#xff0c;请你执行下述操作&#xff1a;…

minio-分布式文件存储系统

minio-分布式文件存储系统 minio的简介 MinIO基于Apache License v2.0开源协议的对象存储服务&#xff0c;可以做为云存储的解决方案用来保存海量的图片&#xff0c;视频&#xff0c;文档。由于采用Golang实现&#xff0c;服务端可以工作在Windows,Linux, OS X和FreeBSD上。配置…

Stable Diffusion 硬核生存指南:WebUI 中的 CodeFormer

本篇文章聊聊 Stable Diffusion WebUI 中的核心组件&#xff0c;强壮的人脸图像面部画面修复模型 CodeFormer 相关的事情。 写在前面 在 Stable Diffusion WebUI 项目中&#xff0c;源码 modules 目录中&#xff0c;有一个有趣的目录叫做 CodeFormer&#xff0c;它就是本文的…

P3855 [TJOI2008] Binary Land(BFS)(内附封面)

[TJOI2008] Binary Land 题目背景 Binary Land是一款任天堂红白机上的经典游戏&#xff0c;讲述的是两只相爱的企鹅Gurin和Malon的故事。两只企鹅在一个封闭的迷宫中&#xff0c;你可以控制他们向上下左右四个方向移动。但是他们的移动有一个奇怪的规则&#xff0c;即如果你按…

【点云处理教程】00计算机视觉的Open3D简介

一、说明 Open3D 是一个开源库&#xff0c;使开发人员能够处理 3D 数据。它提供了一组用于 3D 数据处理、可视化和机器学习任务的工具。该库支持各种数据格式&#xff0c;例如 .ply、.obj、.stl 和 .xyz&#xff0c;并允许用户创建自定义数据结构并在程序中访问它们。 Open3D 广…

Python——调用webdriver.Chrome() 报错

今天运行脚本&#xff0c;报错内容如下&#xff1a; collecting ... login_case.py:None (login_case.py) login_case.py:11: in <module> dr webdriver.Chrome() D:\Program Files (x86)\Python\Python39\Lib\site-packages\selenium\webdriver\chrome\webdriver.p…

uniapp使用视频地址获取视频封面

很多时候我们都需要使用视频的第一帧当作视频的封面&#xff0c;今天我们从uni-app的安卓app这个环境来实现下这个需求。 uniapp 安卓APP端&#xff08;ios未测试&#xff09; 方法&#xff1a;使用renderjs实现对DOM元素的操作&#xff0c;创建video元素获取视频转第一帧&am…

图论-简明导读

计算机图论是计算机科学中的一个重要分支&#xff0c;它主要研究图的性质和结构&#xff0c;以及如何在计算机上有效地存储、处理和操作这些图。本文将总结计算机图论的核心知识点。 一、基本概念 计算机图论中的基本概念包括图、节点、边等。图是由节点和边构成的数据结构&am…

APP外包开发的iOS开发框架

在开发APP时需要用到各种框架&#xff0c;这些框架提供了基础的软件功能&#xff0c;可以减轻开发工作量&#xff0c;因此在APP项目开发中熟练运用常见的框架是开发者需要掌握的技能。每个框架都有其特点和适用场景&#xff0c;开发者可以根据项目的需求选择合适的框架进行开发…

kv键值对快速转换为json串(字典类型) | 批量添加双引号

从浏览器中复制的以下数据, 并不能直接使用 refresh:0 start:0 count:20 selected_categories:%7B%7D uncollect:false playable:true tags:在python中需转为字典类型 {refresh: 0,start: 0,count: 20,selected_categories: %7B%7D,uncollect: false,playable: true,tags: , …

docker push 报错:unauthorized: unauthorized to access repository: library/xx处理方法

rootmaster:/home/data/harbor# sudo docker login 49.0.241.2 admin Harbor12345 1.报错原因分析 rootmaster:/home/data/harbor# docker push 49.0.241.2/library/nginx:latest #这种报错 The push refers to repository [49.0.241.2/library/nginx] Get "https://49.…

【网络】网络层(IP协议)

目录 一、基本概念 二、协议头格式 三、网段划分 四、特殊的IP地址 五、IP地址的数量限制 六、私有IP地址和公网IP地址 七、路由 一、基本概念 IP协议&#xff1a;提供一种能力&#xff0c; 将数据从A主机送到B主机&#xff0c;&#xff08;TCP协议&#xff1a;确保IP协议…

数据分析 VS 数据可视化:决战时刻

数据分析和数据可视化是数据科学领域中两个重要的组成部分&#xff0c;很多人不明白两者之间的关系&#xff0c;会误认为是一个东西&#xff0c;其实不然。本文就带大家简单了解一下它们的区别与联系吧&#xff01; 数据分析是指通过收集、处理和解释数据来获取有关特定问题或…

Jenkins 节点该如何管理?

Jenkins 拥有分布式构建(在 Jenkins 的配置中叫做节点)&#xff0c;分布式构建能够让同一套代码在不同的环境(如&#xff1a;Windows 和 Linux 系统)中编译、测试等 Jenkins 的任务可以分布在不同的节点上运行 节点上需要配置 Java 运行时环境&#xff0c;JDK 版本大于 1.5 节…