【网络】网络层(IP协议)

目录

一、基本概念

二、协议头格式

三、网段划分

四、特殊的IP地址

五、IP地址的数量限制

六、私有IP地址和公网IP地址

七、路由


一、基本概念

  •  IP协议:提供一种能力, 将数据从A主机送到B主机,(TCP协议:确保IP协议把数据送到了B主机)。
  •  IP地址:目标网络 + 目标主机。
  •  主机:配有IP地址, 但是不进行路由控制的设备。
  •  路由器:即配有IP地址,又能进行路由控制。
  •  节点:主机和路由器的统称。

二、协议头格式

  •  4位版本号(version):指定IP协议的版本,对于IPv4来说,就是4。
  •  4位头部长度(header length):IP头部的长度是多少个32bit,也就是 length * 4 的字节数。4bit表示最大的数字是15,因此IP头部最大长度是60字节。
  •  8位服务类型(Type Of Service):3位优先权字段(已经弃用),4位TOS字段,和1位保留字段(必须置为0)。4位TOS分别表示:最小延时,最大吞吐量,最高可靠性,最小成本。这四者相互冲突,只能选择一个。对于ssh/telnet这样的应用程序,最小延时比较重要。对于ftp这样的程序,最大吞吐量比较重要。
  •  16位总长度(total length):IP数据报整体占多少个字节。
  •  16位标识(id):唯一的标识主机发送的报文。如果IP报文在数据链路层被分片了,那么每一个片里面的这个id都是相同的。
  •  3位标志字段:第一位保留(保留的意思是现在不用,但是还没想好说不定以后要用到)。第二位置为1表示禁止分片,这时候如果报文长度超过MTU,IP模块就会丢弃报文。第三位表示"更多分片",如果分片了的话,最后一个分片置为 0 ,其他是 1 。类似于一个结束标记。
  •  13位分片偏移(framegament offset):是分片相对于原始IP报文开始处的偏移。其实就是在表示当前分片在原报文中处在哪个位置。实际偏移的字节数是这个值 * 8 得到的。因此,除了最后一个报文之外,其他报文的长度必须是8的整数倍(否则报文就不连续了)。
  •  8位生存时间(Time To Live, TTL):数据报到达目的地的最大报文跳数。一般是64。每次经过一个路由,TTL-= 1,一直减到0还没到达,那么就丢弃了。这个字段主要是用来防止出现路由循环。
  •  8位协议:表示上层协议的类型。
  • 16位头部校验和:使用CRC进行校验,来鉴别头部是否损坏。
  •  32位源地址和32位目标地址:表示发送端和接收端。
  •  选项字段(不定长,最多40字节)

 在网络中,报文要在满足不大于数据链路层MTU的前提下,尽量不要分片。 因为过多的分片容易增加丢包率,而分片丢失,传输层就认为整个报文丢失了。所以就需要让TCP协议发送的数据不要过大,单个报文有效数据的大小不超过 MTU - TCP协议报头大小 - IP协议报头大小,称为MSS(最大段尺寸)。这也是TCP滑动窗口中要把窗口范围内的数据拆成多份发送的原因。

三、网段划分

IP地址分为两个部分,网络号和主机号。

  • 网络号:保证相互连接的两个网段具有不同的标识。
  • 主机号:同一网段内,主机之间具有相同的网络号,但是必须有不同的主机号。

  •  不同的子网其实就是把网络号相同的主机放到一起。
  •  如果在子网中新增一台主机,则这台主机的网络号和这个子网的网络号一致。但是主机号必须不能和子网中的其他主机重复。
  •  子网是由路由器构建的,路由器一般都是一个子网中的第一台主机,因此主机标识是1。

 通过合理设置主机号和网络号,就可以保证在相互连接的网络中,每台主机的IP地址都不相同。

 那么问题来了,手动管理子网内的IP,是一个相当麻烦的事情。

  •  有一种技术叫做DHCP,能够自动的给子网内新增主机节点分配IP地址,避免了手动管理IP的不便。
  •  一般的路由器都带有DHCP功能。因此路由器也可以看做一个DHCP服务器。

 过去曾经提出一种划分网络号和主机号的方案,把所有IP 地址分为五类,如下图所示(该图出 自[TCPIP])。

  • A类 0.0.0.0到127.255.255.255
  • B类 128.0.0.0到191.255.255.255
  • C类 192.0.0.0到223.255.255.255
  • D类 224.0.0.0到239.255.255.255
  • E类 240.0.0.0到247.255.255.255

 随着Internet的飞速发展,这种划分方案的局限性很快显现出来,大多数组织都申请B类网络地址,导致B类地址很快就分配完了,而A类却浪费了大量地址。

  •  例如,申请了一个B类地址,理论上一个子网内能允许6万5千多个主机。A类地址的子网内的主机数更多。
  •  然而实际网络架设中,不会存在一个子网内有这么多的情况。因此大量的IP地址都被浪费掉了。

 针对这种情况提出了新的划分方案,称为CIDR(Classless Interdomain Routing):

  • 引入一个额外的子网掩码(subnet mask)来区分网络号和主机号。
  • 子网掩码也是一个32位的正整数。通常用一串 "0" 来结尾。
  • 将IP地址和子网掩码进行 "按位与" 操作,得到的结果就是网络号。
  • 网络号和主机号的划分与这个IP地址是A类、B类还是C类无关。

 可见,IP地址与子网掩码做与运算可以得到网络号,主机号从全0到全1就是子网的地址范围。

 IP地址和子网掩码还有一种更简洁的表示方法,例如140.252.20.68/24,表示IP地址为140.252.20.68,子网掩码的高24位是1,也就是255.255.255.0

四、特殊的IP地址

  •  将IP地址中的主机地址全部设为0,就成为了网络号,代表这个局域网。
  •  将IP地址中的主机地址全部设为1,就成为了广播地址,用于给同一个链路中相互连接的所有主机发送数据包。
  •  127.*的IP地址用于本机环回(loop back)测试,通常是127.0.0.1。

五、IP地址的数量限制

 我们知道,IP地址(IPv4)是一个4字节32位的正整数。那么一共只有 2的32次方 个IP地址,大概是43亿左右。而TCP/IP协议规定,每个主机都需要有一个IP地址。

 这意味着,一共只有43亿台主机能接入网络么?

 实际上,由于一些特殊的IP地址的存在,数量远不足43亿。另外IP地址并非是按照主机台数来配置的,而是每一个网卡都需要配置一个或多个IP地址。

 CIDR在一定程度上缓解了IP地址不够用的问题(提高了利用率,减少了浪费,但是IP地址的绝对上限并没有增加),仍然不是很够用。这时候有三种方式来解决:

  •  动态分配IP地址:只给接入网络的设备分配IP地址。因此同一个MAC地址的设备,每次接入互联网中,得到的IP地址不一定是相同的。
  •  NAT技术
  •  IPv6:IPv6并不是IPv4的简单升级版。这是互不相干的两个协议,彼此并不兼容。IPv6用16字节128位来表示一个IP地址。但是目前IPv6还没有普及。

六、私有IP地址和公网IP地址

 如果一个组织内部组建局域网,IP地址只用于局域网内的通信,而不直接连到Internet上,理论上 使用任意的IP地址都可以,但是RFC 1918规定了用于组建局域网的私有IP地址:

  • 10.*,前8位是网络号,共16,777,216个地址。
  • 172.16.到172.31.,前12位是网络号,共1,048,576个地址。
  • 192.168.*,前16位是网络号,共65,536个地址。
  • 包含在这个范围中的,都成为私有IP,其余的则称为全局IP(或公网IP)。

  •  一个路由器可以配置两个IP地址,一个是WAN口IP,一个是LAN口IP(子网IP)。
  •  路由器LAN口连接的主机,都从属于当前这个路由器的子网中。
  •  不同的路由器,子网IP其实都是一样的(通常都是192.168.1.1)。子网内的主机IP地址不能重复,但是子网之间的IP地址就可以重复了。
  •  每一个家用路由器,其实又作为运营商路由器的子网中的一个节点。这样的运营商路由器可能会有很多级,最外层的运营商路由器,WAN口IP就是一个公网IP了。
  •  子网内的主机需要和外网进行通信时,路由器将IP首部中的IP地址进行替换(替换成WAN口IP),这样逐级替换,最终数据包中的IP地址成为一个公网IP。这种技术称为NAT(Network Address Translation,网络地址转换)。
  •  因为子网的私有IP在向上传递的过程中不断经历着向WAN口IP转换的过程,因此就可以在内网中把LAN口IP设置成IPV6,WAN口继续使用IPV4了。
  •  如果希望我们自己实现的服务器程序,能够在公网上被访问到,就需要把程序部署在一台具有外网IP的服务器上。这样的服务器可以在阿里云/腾讯云上进行购买。

七、路由

 在复杂的网络结构中,找出一条通往终点的路线。路由的过程,就是一跳一跳(Hop by Hop) "问路" 的过程。

 所谓 "一跳" 就是数据链路层中的一个区间。具体在以太网中指从源MAC地址到目的MAC地址之间的帧传输区间。

 IP数据包的传输过程和问路一样。

  • 当IP数据包,到达路由器时,路由器会先查看目的IP。
  • 路由器决定这个数据包是能直接发送给目标主机,还是需要发送给下一个路由器。
  • 依次反复,一直到达目标IP地址。

那么如何判定当前这个数据包该发送到哪里呢? 这个就依靠每个节点内部维护一个路由表。

  •  路由表可以使用route命令查看
  •  如果目的IP命中了路由表, 就直接转发即可;
  •  路由表中的最后一行,主要由下一跳地址和发送接口两部分组成,当目的地址与路由表中其它行都不匹配时,就按缺省路由条目规定的接口发送到下一跳地址。

假设某主机上的网络接口配置和路由表如下:

  •  这台主机有两个网络接口,一个网络接口连到192.168.10.0/24网络,另一个网络接口连到192.168.56.0/24网络。
  •  路由表的Destination是目的网络地址,Genmask是子网掩码,Gateway是下一跳地址,Iface是发送接口,Flags中的U标志表示此条目有效(可以禁用某些 条目),G标志表示此条目的下一跳地址是某个路由器的地址,没有G标志的条目表示目的网络地址是与本机接口直接相连的网络,不必经路由器转发。

转发过程例1:如果要发送的数据包的目的地址是192.168.56.3。

  •  跟第一行的子网掩码做与运算得 到192.168.56.0,与第一行的目的网络地址不符。
  •  再跟第二行的子网掩码做与运算得 到192.168.56.0,正是第二行的目的网络地址,因此从eth1接口发送出去。
  •  由于192.168.56.0/24正 是与eth1 接口直接相连的网络,因此可以直接发到目的主机,不需要经路由器转发。

转发过程例2:如果要发送的数据包的目的地址是202.10.1.2。

  • 依次和路由表前几项进行对比, 发现都不匹配;
  • 按缺省路由条目, 从eth0接口发出去, 发往192.168.10.1路由器;
  • 由192.168.10.1路由器根据它的路由表决定下一跳地址

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/55463.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据分析 VS 数据可视化:决战时刻

数据分析和数据可视化是数据科学领域中两个重要的组成部分,很多人不明白两者之间的关系,会误认为是一个东西,其实不然。本文就带大家简单了解一下它们的区别与联系吧! 数据分析是指通过收集、处理和解释数据来获取有关特定问题或…

Jenkins 节点该如何管理?

Jenkins 拥有分布式构建(在 Jenkins 的配置中叫做节点),分布式构建能够让同一套代码在不同的环境(如:Windows 和 Linux 系统)中编译、测试等 Jenkins 的任务可以分布在不同的节点上运行 节点上需要配置 Java 运行时环境,JDK 版本大于 1.5 节…

今年嵌入式行情怎么样?

我不了解其它行业可能描述有些片面,但总的来说,我对嵌入式是很看好的,因为你可以感受到你能实际的做出产品而不是类似前端和互联网只是数字数据。 并且嵌入式的学习过程充满乐趣,你可以接触到从沙子到开关管到逻辑门到芯片架构到…

图文档数字化:实现高效管理的几大步骤

在当今数字化时代,企业越来越意识到数字化管理对于图文档的重要性。传统的纸质文件管理往往效率低下,容易出现丢失和混乱的情况。为了提高工作效率、降低成本并确保数据安全,许多企业选择采用PDM(产品数据管理)系统来实…

JVM内存模型【入门】

计算机结构简图 JVM内存模型 详细说明:https://blog.csdn.net/m0_71777195/article/details/126247090 什么是JVM? JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一个虚构出来的计算机,有着自己完善…

【触觉智能Purple Pi OH开发板体验】开箱体验:开源主板Purple Pi RK3566 上手指北

前言 前段时间收到来自【电子发烧友】的一款开发板,名叫:PurplePi,216G售价仅249元。它使用的芯片是rk3566,适配的OpenHarmony版本为3.2 Release 是目前最便宜的OpenHarmony标准系统开源开发板,并且软硬件全部开源&am…

SpringCloud之断路器聚合监控

一、Hystrix Turbine简介 看单个的Hystrix Dashboard的数据并没有什么多大的价值,要想看这个系统的Hystrix Dashboard数据就需要用到Hystrix Turbine。Hystrix Turbine将每个服务Hystrix Dashboard数据进行了整合。Hystrix Turbine的使用非常简单,只需要…

QT数据库编程

ui界面 mainwindow.cpp #include "mainwindow.h" #include "ui_mainwindow.h" #include <QButtonGroup> #include <QFileDialog> #include <QMessageBox> MainWindow::MainWindow(QWidget* parent): QMainWindow(parent), ui(new Ui::M…

[Linux]基础IO详解(系统文件I/O接口、文件描述符、理解重定向)

hello&#xff0c;大家好&#xff0c;这里是bang___bang_ &#xff0c;今天和大家谈谈Linux中的基础IO&#xff0c;包含内容有对应的系统文件I/O接口&#xff0c;文件描述符&#xff0c;理解重定向。 目录 1️⃣初识文件 2️⃣ 系统文件I/O接口 &#x1f359;open &#x1…

小程序学习(五):WXSS模板语法

1.什么是WXSS WXSS是一套样式语言,用于美化WXML的组件样式,类似于网页开发中的CSS 2.WXSS和CSS的关系 WXSS模板样式-rpx 3.什么是rpx尺寸单位 4.rpx的实现原理 5.rpx与px之间的单位换算* WXSS模板样式-样式导入 6.什么是样式导入 使用WXSS提供的import语法,可以导入外联的样式…

华为云低代码平台Astro Canvas 搭建汽车展示大屏——实验指导手册

实验背景 大屏应用Astro Canvas是华为云低代码平台Astro的子服务之一&#xff0c;是以数据可视化为核心&#xff0c;以屏幕轻松编排&#xff0c;多屏适配可视为基础&#xff0c;用户可通过图形化界面轻松搭建专业水准的数据可视化大屏。例如汽车展示大屏、监控大屏、项目开发大…

数据结构——绪论

一、绪论 &#xff08;一&#xff09;基本概念 数据&#xff1a;数据是对客观事物的符号表示&#xff0c;在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。 数据元素&#xff1a;数据元素是数据的基本单位&#xff0c;在计算机程序中通常作为一个整…

消息队列总结(4)- RabbitMQ Kafka RocketMQ高性能方案

1.RabbitMQ的高性能解决方案 1.1 发布确认机制 RabbitMQ提供了3种生产者发布确认的模式&#xff1a; 简单模式&#xff08;Simple Mode&#xff09;&#xff1a;生产者发送消息后&#xff0c;等待服务器确认消息已经被接收。这种模式下&#xff0c;生产者发送消息后会阻塞&am…

学习系统编程No.34【线程同步之信号量】

引言&#xff1a; 北京时间&#xff1a;2023/7/29/16:34&#xff0c;一切尽在不言中&#xff0c;前几天追了几部电视剧&#xff0c;看了几部电影&#xff0c;刷了n个视屏&#xff0c;在前天我们才终于从这快乐的日子里恢复过来&#xff0c;然后看了两节课&#xff0c;也就是上…

真机搭建中小网络

这是b站上的一个视频&#xff0c;演示了如何搭建一个典型的中小网络&#xff0c;供企业使用 一、上行端口&#xff1a;上行端口就是连接汇聚或者核心层的口&#xff0c;或者是出广域网互联网的口。也可理解成上传数据的端口。 二、下行端口&#xff1a;连接数据线进行下载的端…

Scratch Blocks自定义组件之「旋律播放」

一、背景 看到microbit edit有旋律编辑器&#xff0c;就在scratch块中也写了一个&#xff0c;如下图所示 这是我写的 这是Micro:bit的 二、功能配置说明 支持8个音符8拍旋律控制 三、使用说明 &#xff08;1&#xff09;引入添加field_tone.js到core文件夹中&#xff0c;代码在…

信息系统网络安全整改方案

第1章 项目概述 1.1 项目目标 本方案将通过对公司网络信息系统的安全现状进行分析工作&#xff0c;参照国家信息系统等级保护要求&#xff0c;找出信息系统与安全等级保护要求之间的差距&#xff0c;给出相应的整改意见&#xff0c;推动 XX 企业公司网络信息系统安全整改工作的…

计算机毕设 深度学习手势识别 - yolo python opencv cnn 机器视觉

文章目录 0 前言1 课题背景2 卷积神经网络2.1卷积层2.2 池化层2.3 激活函数2.4 全连接层2.5 使用tensorflow中keras模块实现卷积神经网络 3 YOLOV53.1 网络架构图3.2 输入端3.3 基准网络3.4 Neck网络3.5 Head输出层 4 数据集准备4.1 数据标注简介4.2 数据保存 5 模型训练5.1 修…

与“云”共舞,联想凌拓的新科技与新突破

伴随着数字经济的高速发展&#xff0c;IT信息技术在数字中国建设中起到的驱动和支撑作用也愈发凸显。特别是2023年人工智能和ChatGPT在全球的持续火爆&#xff0c;更是为整个IT产业注入了澎湃动力。那么面对日新月异的IT信息技术&#xff0c;再结合疫情之后截然不同的经济环境和…

【抖音小游戏】 Unity制作抖音小游戏方案 最新完整详细教程来袭【持续更新】

前言 【抖音小游戏】 Unity制作抖音小游戏方案 最新完整详细教程来袭【持续更新】一、相关准备工作1.1 用到的相关网址1.2 注册字节开发者后台账号 二、相关集成工作2.1 下载需要的集成资源2.2 安装StarkSDK和starksdk-unity-tools工具包2.3 搭建测试场景 三、构建发布3.1 发布…