计算机毕设 深度学习实现行人重识别 - python opencv yolo Reid

文章目录

  • 0 前言
  • 1 课题背景
  • 2 效果展示
  • 3 行人检测
  • 4 行人重识别
  • 5 其他工具
  • 6 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 **基于深度学习的行人重识别算法研究与实现 **

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

在这里插入图片描述

1 课题背景

行人重识别是计算机视觉领域的研究热点之一,旨在研究不重叠的多个摄像区域间对于特定行人的匹配准确率,是图像检索的子问题,多应用于安防和刑侦。我国实现的视频监控“天网”,就是通过在人流量大的公共区域密集安装监控设备来实现“平安城市”建设。尽管部分摄像头可转动,但仍存在监控盲区和死角等局限性问题,Re-ID技术弥补了摄像设备的视觉局限性。然而,在实际应用中异时异地相同行人的图像数据,在姿势、前景背景、光线视角以及成像分辨率等方面差异大,使得Re-ID研究具有挑战性。
行人重识别展示

2 效果展示

手动标记在这里插入图片描述
检测结果
在这里插入图片描述

3 行人检测

本项目实现了基于 yolo框架的行人目标检测算法,并将该目标检测算法应用在图像和视频的识别检测之中。

简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
在这里插入图片描述
Head输出层
输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述
相关代码

class Yolo(object):
    def __init__(self, weights_file, verbose=True):
        self.verbose = verbose
        # detection params
        self.S = 7  # cell size
        self.B = 2  # boxes_per_cell
        self.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle",
                        "bus", "car", "cat", "chair", "cow", "diningtable",
                        "dog", "horse", "motorbike", "person", "pottedplant",
                        "sheep", "sofa", "train","tvmonitor"]
        self.C = len(self.classes) # number of classes
        # offset for box center (top left point of each cell)
        self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),
                                              [self.B, self.S, self.S]), [1, 2, 0])
        self.y_offset = np.transpose(self.x_offset, [1, 0, 2])

        self.threshold = 0.2  # confidence scores threhold
        self.iou_threshold = 0.4
        #  the maximum number of boxes to be selected by non max suppression
        self.max_output_size = 10

        self.sess = tf.Session()
        self._build_net()
        self._build_detector()
        self._load_weights(weights_file)

4 行人重识别

简介
行人重识别(Person re-identification)也称行人再识别, 被广泛认为是一个图像检索的子问题, 是利用计算机视觉技术判断图像或者视频中是否存在特定行人的技术, 即给定一个监控行人图像检索跨设备下的该行人图像。行人重识别技术可以弥补目前固定摄像头的视觉局限, 并可与行人检测、行人跟踪技术相结合, 应用于视频监控、智能安防等领域。
在这里插入图片描述行人重识别系统

行人检测
主要用于检测视频中出现的人像,作为一个行人重识别首先要做到的就是能够将图片中的行人识别出来,称为Gallery输入。当然,在学术研究领域,行人重识别主要还是关注的下面这个部分,而对于行人检测这部分多选择采用目前已经设计好的框架。
行人重识别
这一部分就是对上面的Probe以及Gallery进行特征提取,当然提取的方式可以是手工提取,也可以使用卷积神经网络进行提取。然后呢,就是对图片的相似度进行度量,根据相似图进行排序。
针对行人重识别系统从细节来说,包括下面几个部分:

  • 特征提取(feature Extraction):学习能够应对在不同摄像头下行人变化的特征。
  • 度量学习(Metric Learning) :将学习到的特征映射到新的空间使相同的人更近不同的人更远。
  • 图像检索(Matching):根据图片特征之间的距离进行排序,返回检索结果

Reid提取特征
行人重识别和人脸识别是类似的,刚开始接触的可以认为就是人脸换成行人的识别。

  1. 截取需要识别的行人底库
    在这里插入图片描述

  2. 保存行人特征,方便进行特征比对

相关代码

# features:reid模型输出512dim特征
person_cossim = cosine_similarity(features, self.query_feat)
max_idx = np.argmax(person_cossim, axis=1)
maximum = np.max(person_cossim, axis=1)
max_idx[maximum < 0.6] = -1
score = maximum
reid_results = max_idx
draw_person(ori_img, xy, reid_results, self.names)  # draw_person name

5 其他工具

OpenCV
是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法。
在这里插入图片描述
本项目中利用opencv进行相关标记工作,相关代码:

import cv2
import numpy as np

def cv_imread(filePath):
    cv_img = cv2.imdecode(np.fromfile(filePath,dtype=np.uint8), -1)
    return cv_img

# 需要可视化的图片地址
img_path = ‘’
# 对应图片的检测结果
detection_result = []

# 如果路径中包含中文,则需要用函数cv_imread的方式来读取,否则会报错
img = cv_imread(img_path)
 # 可视化
for bb in detection_result:
    # bb的格式为:[xmin, ymin, xmax, ymax]
    cv2.rectangle(img, (int(bb[0]), int(bb[1])),
                        (int(bb[2]), int(bb[3])),
                         (255, 0, 0), 2)

cv2.imshow('1', img)
cv2.waitKey(0)

6 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/55310.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

二阶段web基础与http协议

dns与域名 网络是基于tcp/ip协议进行通信和连接的 应用层-----传输层-----网络层-----数据链路层-----物理层 ip地址&#xff0c;每一台主机都有一个唯一的地址标识&#xff08;固定的ip地址&#xff09; 1.区分用户和计算机 2.通信 ip地址的问题在于32位二进制数组成的&…

【安装vue脚手架报错:npm install -g @vue-cli pm ERR! code EINVALIDTAGNAME 】

当我们执行npm install -g vue-cli时候会报错&#xff1a; npm ERR! Invalid tag name “vue-cli” of package “vue-cli”: Tags may not have any characters that encodeURIComponent encodes. npm ERR! A complete log of this run can be found in: /Users/wuwenlu/.npm/…

Centos虚拟机修改密码

1.重启系统 2.在这个选择界面&#xff0c;按e 3.找到如下位置&#xff0c;插入init/bin/sh 4.填写完成后按Ctrlx引导启动 5.输入mount -o remount, rw / (注意空格) 6.重置密码 出现以下为重置成功 7.执行touch /.autorelabel 8.退出exec /sbin/init 9.输入你的新密码…

React入门学习笔记1

前言 React是一个用来动态构0建用户界面的JavaScript库&#xff08;只关注于视图&#xff09;。它可以帮助开发人员轻松地创建复杂的交互式界面&#xff0c;以及管理与用户交互的状态。相比于其他的JavaScript框架&#xff0c;React采用了一种不同的编程模型&#xff0c;称为“…

【BASH】回顾与知识点梳理(二)

【BASH】回顾与知识点梳理 二 二. Shell 的变量功能2.1 什么是变量&#xff1f;2.2 变量的取用与设定: echo, 变量设定规则: set/unset2.3 环境变量的功能用 set 观察所有变量 (含环境变量与自定义变量)export&#xff1a; 自定义变量转成环境变量那如何将环境变量转成自定义变…

《向量数据库指南》——当前向量数据库的赛道有哪些?

当前&#xff0c;向量数据库赛道主要分为四个类别&#xff1a; 基于PG、Clickhouse 等进行魔改或者插件化实现的向量数据库&#xff1a;这类解决方案以现有的关系数据库或列存数据库作为基础&#xff0c;通过修改或插件扩展的方式添加向量搜索功能。PG Vector 是这类解决方案的…

【设计模式——学习笔记】23种设计模式——外观模式Facade(原理讲解+应用场景介绍+案例介绍+Java代码实现)

文章目录 案例引入介绍基本介绍类图出场角色 案例实现案例一类图代码实现 案例二类图代码实现 外观模式在Mybatis源码中的应用总结文章说明 案例引入 在家庭影院中&#xff0c;要享受一场电影&#xff0c;需要如下步骤&#xff1a; 直接用遥控器&#xff1a;统筹各设备开关开…

Linux - 进程控制(进程替换)

0.引入 创建子进程的目的是什么&#xff1f; 就是为了让子进程帮我执行特定的任务 让子进程执行父进程的一部分代码 如果子进程想执行一个全新的程序代码呢&#xff1f; 那么就要使用 进程的程序替换 为什么要有程序替换&#xff1f; 也就是说子进程想执行一个全新的程序代码&a…

FSM:Full Surround Monodepth from Multiple Cameras

参考代码&#xff1a;None 介绍 深度估计任务作为基础环境感知任务&#xff0c;在基础上构建的3D感知才能更加准确&#xff0c;并且泛化能力更强。单目的自监督深度估计已经有MonoDepth、ManyDepth这些经典深度估计模型了&#xff0c;而这篇文章是对多目自监督深度估计进行探…

three.js实现vr全景图

方法: 可以利用Threejs中的立方体或者球体实现全景图功能&#xff0c;把立方体或球体当成天空盒子&#xff0c;将无缝衔接的图片贴上&#xff0c;看起来就像在一个场景中&#xff0c;相机一般放置在中央。 three.js中文网 1、立方体实现 立方体6个面要贴上6个方向的图片&…

Pytorch深度学习-----神经网络之非线性激活的使用(ReLu、Sigmoid)

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用&#xff08;ToTensor&#xff0c;Normalize&#xff0c;Resize &#xff0c;Co…

html:去除input/textarea标签的拼写检查

默认情况下&#xff0c;textarea 会启动拼写和语法检查&#xff0c;表现效果就是单词拼写错误会出现红色下划线提示 <textarea></textarea>效果 有时&#xff0c;我们并不需要拼写检查&#xff0c;可以通过配置属性spellcheck"false" 去除拼写和语法检…

物联网远程智能控制设备——开关量/正反转百分比控制

如今生产生活的便利性极大程度上得益于控制技术的发展&#xff0c;它改变了传统的工作模式&#xff0c;并将人们从【纯劳力】中解放出来。如今&#xff0c;随着科学技术的进步&#xff0c;控制器的种类及应用领域也越来越多。 物联网远程智能控制设备就是一种新型的、能够用于…

抄写Linux源码(Day2:构建调试环境)

我们计划把操作系统运行在 qemu-system-x86_64 上&#xff0c;使用 gdb 调试 经过 RTFM&#xff0c;可以使用 qemu-system-x86_64 -s -S 让 qemu 在启动之后停住 接着在另一个窗口运行 gdb&#xff0c;输入命令 target remote localhost:1234&#xff0c;即可连接qemu并调试运…

泛微oa 二次开发指南(ecology)

目录标题 一、环境搭建&#xff08;一&#xff09;先下载安装泛微oa&#xff08;ecology&#xff09;&#xff08;二&#xff09;idea环境搭建二、官方文档三、开发规范&#xff08;里面有入门案例&#xff09;四、三方系统调用oa系统接口五、oa系统所有接口文档六、ecology的一…

mysql事务日志

事务有4中特性&#xff1a;原子性&#xff0c;一致性&#xff0c;隔离性和持久性。那么事务的四种特性到底是基于什么机制实现的呢&#xff1f; 1. 事务的隔离性由 锁机制 实现。 2. 而事务的原子性&#xff0c;一致性和持久性由事务的redo日志和undo日志来保证的。 ~ redo l…

2023-07-30 LeetCode每日一题(环形链表 II)

2023-07-30每日一题 一、题目编号 142. 环形链表 II二、题目链接 点击跳转到题目位置 三、题目描述 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 n…

HTTP协议 和 HTTPS协议的区别(4点) HTTPS的缺点 HTTP如何使用SSL/TLS协议加密过程 CA证书干啥的

&#xff08;一&#xff09;HTTP协议 和 HTTPS协议的区别&#xff08;4点&#xff09;&#xff1a; 1. HTTP协议的端口号是80&#xff0c; HTTPS协议的端口号是443 2. HTTP协议使用的URL是以 http:// 开头&#xff0c;HTTPS协议使用的URL是以https://开头 3. HTTP协议和HTTP…

MedSAM通用医学分割基础模型(2023+Segment Anything in Medical Images)

摘要&#xff1a; MedSAM&#xff0c;这是为通用医学图像分割设计的首个基础模型。利用包含超过一百万张图像的精心策划的数据集的力量&#xff0c;MedSAM不仅优于现有的最先进的分割基础模型&#xff0c;而且表现出与专业模型相当甚至更好的性能。此外&#xff0c;MedSAM能够…

计算机视觉实验:人脸识别系统设计

实验内容 设计计算机视觉目标识别系统&#xff0c;与实际应用有关&#xff08;建议&#xff1a;最终展示形式为带界面可运行的系统&#xff09;&#xff0c;以下内容选择其中一个做。 1. 人脸识别系统设计 (1) 人脸识别系统设计&#xff08;必做&#xff09;&#xff1a;根据…