就业班 第三阶段(nginx) 2401--4.17 day1 nginx1

负载均衡集群

1、集群是什么?

1 集群(cluster)技术是一种较新的技术,通过集群技术,可以在付出较低成本的情况下获得在性能、可靠性、灵活性方面的相对较高的收益,其任务调度则是集群系统中的核心技术。

2 集群组成后,可以利用多个计算机和组合进行海量请求处理(负载均衡),从而获得很高的处理效率,也可以用多个计算机做备份(高可用),使得任何一个机器坏了整个系统还是能正常运行。

2、负载均衡集群技术

![image-20240417105115637](https://xian-liuyang.oss-cn-beijing.aliyuncs.com/image-20240417105115637.png

① 负载均衡(Load Balance):负载均衡集群为企业需求提供了可解决容量问题的有效方案。负载均衡集群使负载可以在计算机集群中尽可能平均地分摊处理。

② 负载通常包括应用程序处理负载和网络流量负载,每个节点都可以承担一定的处理负载,并且可以实现处理负载在节点之间的动态分配,以实现负载均衡。

3、负载均衡集群技术的实现

负载均衡(Load Balance)

负载均衡技术类型:基于 4 层负载均衡技术和基于 7 层负载均衡技术

负载均衡实现方式:硬件负载均衡设备或者软件负载均衡

硬件负载均衡产品:F5    、深信服 、Radware

软件负载均衡产品: LVS(Linux Virtual Server)、 Haproxy、Nginx、Ats(apache traffic server)

4、实现效果如图

5、负载均衡分类

我们先来看一张图,相信很多同学对这张图都不陌生,这是一张网络模型图,包含了 OSI 模型及 TCP/IP 模型,两个模型虽然有一点点区别,但主要的目的是一样的,模型图描述了通信是怎么进行的。它解决了实现有效通信所需要的所有过程,并将这些过程划分为逻辑上的层。层可以简单地理解成数据通信需要的步骤。

负载均衡根据所采用的设备对象(软/硬件负载均衡),应用的OSI网络层次(网络层次上的负载均衡),及应用的地理结构(本地/全局负载均衡)等来分类。下面着重介绍的是根据应用的 OSI 网络层次来分类的两个负载均衡类型。

负载均衡可以大概分为以下几类:

  • 二层负载均衡(mac) 一般是用虚拟mac地址方式,外部对虚拟MAC地址请求,负载均衡接收后分配后端实际的MAC地址响应。

  • 三层负载均衡(ip) 一般采用虚拟IP地址方式,外部对虚拟的ip地址请求,负载均衡接收后分配后端实际的IP地址响应。

  • 四层负载均衡(tcp) 在三层负载均衡的基础上,用ip+port接收请求,再转发到对应的机器。

  • 七层负载均衡(http) 根据虚拟的url或IP,主机名接收请求,再转向相应的处理服务器。

在实际应用中,比较常见的就是四层负载及七层负载。这里也重点说下这两种负载。

6、四层负载均衡(基于IP+端口的负载均衡)

实现四层负载均衡的软件有:

  • F5:硬件负载均衡器,功能很好,但是成本很高。

  • lvs:重量级的四层负载软件

  • nginx:轻量级的四层负载软件,带缓存功能,正则表达式较灵活(1.9)

  • haproxy:模拟四层转发,较灵活

7、七层的负载均衡(基于虚拟的URL或主机IP的负载均衡)

  1. 在四层负载均衡的基础上(没有四层是绝对不可能有七层的),再考虑应用层的特征,比如同一个Web服务器的负载均衡,除了根据VIP加80端口辨别是否需要处理的流量,还可根据七层的URL、浏览器类别来决定是否要进行负载均衡。

  2. 实现七层负载均衡的软件有:

    • haproxy:天生负载均衡技能,全面支持七层代理,会话保持,标记,路径转移;

    • nginx:只在http协议和mail协议上功能比较好,性能与haproxy差不多;

    • apache:功能较差

    • Mysql proxy:功能尚可。

8、四层负载与七层负载的区别

四层负载均衡七层负载均衡
基于基于IP+Port的基于虚拟的URL或主机IP等。
类似于路由器代理服务器
复杂度
性能高;无需解析内容中;需要算法识别 URL,Cookie 和 HTTP head 等信息
安全性
额外功能会话保持,图片压缩,等

总结:从上面的对比看来四层负载与七层负载最大的区别就是效率与功能的区别。四层负载架构设计比较简单,无需解析具体的消息内容,在网络吞吐量及处理能力上会相对比较高,而七层负载均衡的优势则体现在功能多,控制灵活强大。在具体业务架构设计时,使用七层负载或者四层负载还得根据具体的情况综合考虑。

9、LVS 实现四层负载均衡项目实战

1、LVS 介绍

(1)LVS 是Linux Virtual Server的简称,也就是 Linux 虚拟服务器, 是一个由章文嵩博士发起的自由软件项目,它的官方站点是www.linuxvirtualserver.org。现在LVS已经是 Linux标准内核的一部分,因此性能较高。

(2)LVS软件作用:通过LVS提供的负载均衡技术和Linux操作系统实现一个高性能、高可用的服务器群集,它具有良好可靠性、可扩展性和可操作性。从而以低廉的成本实现最优的服务性能。

2、LVS 优势与不足
1、优势

高并发连接:LVS基于内核网络层面工作,有超强的承载能力和并发处理能力。单台LVS负载均衡器,可支持上万并发连接

稳定性强:是工作在网络4层之上仅作分发之用,这个特点也决定了它在负载均衡软件里的性能最强,稳定性最好,对内存和cpu资源消耗极低。

成本低廉:硬件负载均衡器少则十几万,多则几十万上百万,LVS只需一台服务器和就能免费部署使用,性价比极高。

配置简单:LVS配置非常简单,仅需几行命令即可完成配置,也可写成脚本进行管理。

支持多种算法:支持多种论调算法,可根据业务场景灵活调配进行使用

支持多种工作模型:可根据业务场景,使用不同的工作模式来解决生产环境请求处理问题。

应用范围广:因为LVS工作在4层,所以它几乎可以对所有应用做负载均衡,包括http、数据库、DNS、ftp服务等等

3、不足

工作在4层,不支持7层规则修改,机制过于庞大,不适合小规模应用。

4、LVS 核心组件和专业术语
1、核心组件

LVS的管理工具和内核模块 ipvsadm/ipvs

ipvsadm:用户空间的命令行工具,用于管理集群服务及集群服务上的RS等;

ipvs:工作于内核上的程序,可根据用户定义的集群实现请求转发;

2、专业术语

VS:Virtual Server            #虚拟服务

Director, Balancer          #负载均衡器、分发器

RS:Real Server                #后端请求处理服务器

CIP: Client IP                      #用户端IP

VIP:Director Virtual IP   #负载均衡器虚拟IP

DIP:Director IP               #负载均衡器IP 可以理解为:内网ip

RIP:Real Server IP         #后端请求处理服务器IP

3、具体图解

4、LVS负载均衡四种工作模式

LVS/NAT:网络地址转换模式,进站/出站的数据流量经过分发器(IP负载均衡,他修改的是IP地址)  --利用三层功能
LVS/DR  :直接路由模式,只有进站的数据流量经过分发器(数据链路层负载均衡,因为他修改的是目的mac地址)--利用二层功能mac地址
LVS/TUN: 隧道模式,只有进站的数据流量经过分发器
LVS/full-nat:双向转换:通过请求报文的源地址为DIP,目标为RIP来实现转发:对于响应报文而言,修改源地址为VIP,目标地址为CIP来实现转发
5、LVS 四种工作模式原理、以及优缺点比较

1、NAT模式(VS-NAT) 原理:就是把客户端发来的数据包的IP头的目的地址,在负载均衡器上换成其中一台RS的IP地址,并发至此RS来处理,RS处理完成后把数据交给经过负载均衡器,负载均衡器再把数据包的源IP地址改为自己的IP,将目的地址改为客户端IP地址即可。期间,无论是进来的流量,还是出去的流量,都必须经过负载均衡器。 优点:集群中的物理服务器可以使用任何支持TCP/IP操作系统,只有负载均衡器需要一个合法的IP地址。 缺点:扩展性有限。当服务器节点(普通PC服务器)增长过多时,负载均衡器将成为整个系统的瓶颈,因为所有的请求包和应答包的流向都经过负载均衡器。当服务器节点过多时,大量的数据包都交汇在负载均衡器那,速度就会变慢!

2、直接路由(Direct routing)模式(LVS-DR) 原理:负载均衡器和RS都使用同一个IP对外服务。但只有DR对ARP请求进行响应,所有RS对本身这个IP的ARP请求保持静默。也就是说,网关会把对这个服务IP的请求全部定向给DR,而DR收到数据包后根据调度算法,找出对应的RS,把目的MAC地址改为RS的MAC(因为IP一致)并将请求分发给这台RS。这时RS收到这个数据包,处理完成之后,由于IP一致,可以直接将数据返给客户,则等于直接从客户端收到这个数据包无异,处理后直接返回给客户端。 优点:和TUN(隧道模式)一样,负载均衡器也只是分发请求,应答包通过单独的路由方法返回给客户端。与VS-TUN相比,VS-DR这种实现方式不需要隧道结构,因此可以使用大多数操作系统做为物理服务器。 缺点:(不能说缺点,只能说是不足)要求负载均衡器的网卡必须与物理网卡在一个物理段上。

3、IP隧道(Tunnel)模式(VS-TUN)

   原理:互联网上的大多Internet服务的请求包很短小,而应答包通常很大。那么隧道模式就是,把客户端发来的数据包,封装一个新的IP头标记(仅目的IP)发给RS,RS收到后,先把数据包的头解开,还原数据包,处理后,直接返回给客户端,不需要再经过负载均衡器。注意,由于RS需要对负载均衡器发过来的数据包进行还原,所以说必须支持IPTUNNEL协议。所以,在RS的内核中,必须编译支持IPTUNNEL这个选项    优点:负载均衡器只负责将请求包分发给后端节点服务器,而RS将应答包直接发给用户。所以,减少了负载均衡器的大量数据流动,负载均衡器不再是系统的瓶颈,就能处理很巨大的请求量,这种方式,一台负载均衡器能够为很多RS进行分发。而且跑在公网上就能进行不同地域的分发。    缺点:隧道模式的RS节点需要合法IP,这种方式需要所有的服务器支持”IP Tunneling”(IP Encapsulation)协议,服务器可能只局限在部分Linux系统上。

4、FULL-NAT模式原理:客户端对VIP发起请求,Director接过请求发现是请求后端服务。Direcrot对请求报文做full-nat,把源ip改为Dip,把目标ip转换为任意后端RS的rip,然后发往后端,rs接到请求后,进行响应,相应源ip为Rip目标ip还是DIP,又内部路由路由到Director,Director接到响应报文,进行full-nat。将源地址为VIP,目标地址改为CIP

请求使用DNAT,响应使用SNAT

6、四者的区别

lvs-nat与lvs-fullnat:请求和响应报文都经由Director

lvs-nat:RIP的网关要指向DIP

lvs-fullnat:RIP和DIP未必在同一IP网络,但要能通信

lvs-dr与lvs-tun:请求报文要经由Director,但响应报文由RS直接发往Client

lvs-dr:通过封装新的MAC首部实现,通过MAC网络转发

lvs-tun:通过在原IP报文外封装新IP头实现转发,支持远距离通信

6、LVS ipvsadm 命令的使用
1、LVS-server安装lvs管理软件
yum -y install ipvsadm

程序包:ipvsadm(LVS管理工具)

主程序:/usr/sbin/ipvsadm

规则保存工具:/usr/sbin/ipvsadm-save  > /path/to/file

配置文件:/etc/sysconfig/ipvsadm-config

2、命令选项
-A --add-service #在服务器列表中新添加一条新的虚拟服务器记录
-s --scheduler #使用的调度算法, rr | wrr | lc | wlc | lblb | lblcr | dh | sh | sed | nq 默认调度算法是 wlc
例:ipvsadm -A -t 192.168.1.2:80 -s wrr
​
-a --add-server  #在服务器表中添加一条新的真实主机记录
-t --tcp-service #说明虚拟服务器提供tcp服务
-u --udp-service #说明虚拟服务器提供udp服务
-r --real-server #真实服务器地址
-m --masquerading #指定LVS工作模式为NAT模式
-w --weight #真实服务器的权值
-g --gatewaying #指定LVS工作模式为直接路由器模式(也是LVS默认的模式)
-i --ip #指定LVS的工作模式为隧道模式  
-p #会话保持时间,定义流量被转到同一个realserver的会话存留时间
例:ipvsadm -a -t 192.168.1.2:80 -r 192.168.2.10:80 -m -w 1
​
-E -edit-service #编辑内核虚拟服务器表中的一条虚拟服务器记录。
-D -delete-service #删除内核虚拟服务器表中的一条虚拟服务器记录。
-C -clear #清除内核虚拟服务器表中的所有记录。
-R -restore #恢复虚拟服务器规则
-S -save #保存虚拟服务器规则到标准输出,输出为-R 选项可读的格式
-e -edit-server #编辑一条虚拟服务器记录中的某条真实服务器记录
-d -delete-server #删除一条虚拟服务器记录中的某条真实服务器记录
-L|-l --list #显示内核虚拟服务器表
​
--numeric, -n:#以数字形式输出地址和端口号
--exact: #扩展信息,精确值 
--connection,-c: #当前IPVS连接输出
--stats: #统计信息
--rate : #输出速率信息
​
参数也可以从/proc/net/ip_vs*映射文件中查看
-Z –zero #虚拟服务表计数器清零(清空当前的连接数量等)
7、LVS 负载均衡集群企业级应用实战
业务需求

随着业务的发展,网站的访问量越来越大,网站访问量已经从原来的1000QPS,变为3000QPS,网站已经不堪重负,响应缓慢,面对此场景,单纯靠单台LNMP的架构已经无法承载更多的用户访问,此时需要用负载均衡技术,对网站容量进行扩充,来解决承载的问题。

考虑解决方案?

纵向:scale out  对磁盘等资源扩容

横向:scale up  增加新的服务器

1、环境准备
1、准备虚拟机

准备 3 台纯净的虚拟机,两台 web 服务器

2、LVS-server 安装lvs管理软件
[root@lvs-server ~]# yum -y install ipvsadm

程序包:ipvsadm(LVS管理工具)

主程序:/usr/sbin/ipvsadm

规则保存工具:/usr/sbin/ipvsadm-save > /path/to/file

配置文件:/etc/sysconfig/ipvsadm-config

2、LVS/NAT模式

实验说明:

  1. 虚拟机网络使用NAT模式

  2. client、调度器、Real Server都使用虚拟机或使用真实服务器

  3. 虚拟机上网卡使用半虚拟化驱动,如果半虚拟化驱动异常,可以使用default/rtl8139

1、LVS/NAT网络拓朴

主机名ip系统用途
client192.168.0.105   桥接mac客户端
lvs-server192.168.0.108  桥接
192.168.72.130  仅主机centos7.5分发器
real-server1192.168.72.128  仅主机centos7.5web1
real-server2192.168.72.129  仅主机centos7.5web2
# 配置real-server (两服务器相同)
[root@real-server1 ~]# yum install httpd -y
[root@real-server1 ~]# echo lvs-web1  > /var/www/html/index.html
[root@real-server1 ~]# systemctl start httpd
[root@real-server1 ~]# ip route add default via 192.168.72.130  # 配置默认路由,网关
​
# 配置lvs-server  开启路由转发
[root@lvs-server ~]# vim /etc/sysctl.conf
net.ipv4.ip_forward = 1
[root@lvs-server ~]# sysctl -p                              //确保打开路由转发
[root@lvs-server ~]# yum install ipvsadm -y
设置集群调度算法,(便于验证,此处使用轮询算法):
[root@lvs-server ~]# ipvsadm -A -t 192.168.0.108:80 -s rr
设置后端服务器:
[root@lvs-server ~]# ipvsadm -a -t 192.168.0.108:80 -r 192.168.72.128:80 -m
[root@lvs-server ~]# ipvsadm -a -t 192.168.0.108:80 -r 192.168.72.129:80 -m
查看ipvsadm规则:
[root@lvs-server ~]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  192.168.0.108:80 rr
  -> 192.168.72.128:80            Masq    1      0          7         
  -> 192.168.72.129:80            Masq    1      0          7    
这些规则没有保存在配置文件,重启失效
# 做开启启动
[root@lvs-server ~]# systemctl enable ipvsadm
Created symlink from /etc/systemd/system/multi-user.target.wants/ipvsadm.service to /usr/lib/systemd/system/ipvsadm.service.
[root@lvs-server ~]# ipvsadm -Ln > /etc/sysconfig/ipvsadm
​
# 测试
[root@client ~]# elinks -dump http://192.168.0.108/
[root@client ~]# ab -c 1000 -n 1000 http://192.168.0.108/

补充:

lvs是网关

lvs是可以路由转发

如果要添加ip: ip addr add ip地址/24 dev ens33 (临时的)

做nat的路由转发

注意:需要关闭selinux。

需要具备三台机子

lvs的机子 real-server1 real-server2

在真实的后台服务机子(real-server)安装nginx

在lvs机子添加

ipvsadm -A -t 10.36.181.229 -s wrr

ipvsadm -a -t 10.36.181.229 -r 192.168.91.131 -m -w 2

ipvsadm -a -t 10.36.181.229 -r 192.168.91.132 -m -w 1

在lvs机子上做路由转发,伪装自己

echo 1 > /proc/sys/net/ipv4/ip_forword 做临时的路由转发

sysctl -p 可以查看

配置默认路由(也就是网关)

ip r default via 192.168.91.130(三台机子都通的,写在哪都可以)

在real-server1 写入自己的nginx测试文件

echo "<center><h1>real-server1</h1></center>" > /usr/share/nginx/html/index.html

image-20240417161547360

将这个65更改,长连接就消失了,在浏览器测试就会很一目了然,比如浏览器不断刷新,会很清楚的看到权重的显示,

下面这个也可以:

-p 和 nginx的配置文件中的keepalive_timeout都是保持会话时间的长短,用哪个都可以

real-server2 也一样

然后在lvs机子上查看自己的测试的状态

ipvsadm -Ln --stats

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/552573.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【AI】什么是Ai Agent

什么是AI Agent&#xff1f; AI Agent是指人工智能代理&#xff08;Artificial Intelligence Agent&#xff09;是一种能够感知环境进行自主理解&#xff0c;进行决策和执行动作的智能体。AI Agent具备通过独立思考、调用工具逐步完成给定目标的能力。不同于大模型的区别在于&…

20240417,友元 FRIEND

本来要学习的吃瓜吃了一下午 目录 3.1 全局函数做友元 3.2 友元类 3.3 成员函数做友元 三&#xff0c;友元 3.1 全局函数做友元 #include<iostream> using namespace std; class Building {friend void goodGay(Building* building);//好朋友&#xff0c;可以访问…

13.哀家要长脑子了!

1. 442. 数组中重复的数据 - 力扣&#xff08;LeetCode&#xff09; 哎哟&#xff0c;可能是我太蠢了&#xff0c;我是真的觉得这些题目好神奇的&#xff0c;就这样做到了。感觉这道题跟昨天那道消失的它很类似&#xff0c;但是简单一点。 按照题目的要求数组如果排好序的话应…

必应Bing国内广告推广,帮助企业降低获客成本!

搜索引擎广告作为数字营销的重要手段之一&#xff0c;因其精准定位和效果可衡量而备受青睐。而在众多搜索引擎平台中&#xff0c;必应Bing以其独特的市场定位和用户群体成为不可忽视的广告推广渠道。云衔科技作为一家专业的数字营销服务提供商&#xff0c;致力于帮助企业实现高…

Fiddler抓包工具之高级工具栏中的Inspectors的使用

高级工具栏中的Inspectors的使用 Inspectors 页签允许你用多种不同格式查看每个请求和响应的内容。JPG 格式使用 ImageView 就可以看到图片&#xff0c;HTML/JS/CSS 使用 TextView 可以看到响应的内容。Raw标签可以查看原始的符合http标准的请求和响应头。Cookies标签可以看到…

标志寄存器

文章目录 标志寄存器1. ZF标志2. PF标志3. SF标志4. CF标志5. OF标志6. adc指令7. sbb指令8. cmp指令9. 检测比较结果的条件转移指令10. DF标志和串传送指令11. pushf和popf 标志寄存器 flag 和其他寄存器不一样&#xff0c;其他寄存器是用来存放数据的&#xff0c;都是整个寄…

MCU最小系统晶振模块设计

单片机的心脏&#xff1a;晶振 晶振模块 单片机有两个心脏&#xff0c;一个是8M的心脏&#xff0c;一个是32.768的心脏 8M的精度较低&#xff0c;所以需要外接一个32.768khz 为什么是8MHZ呢&#xff0c;因为内部自带的 频率越高&#xff0c;精度越高&#xff0c;功耗越大&am…

直拍打法 漫漫长夜

小时候爱玩的时候&#xff0c;有马琳&#xff0c;刘国梁这些大腿在&#xff0c;谁敢想象现在顶尖高手中只有一根独苗而且是欧洲本土独苗了&#xff1f; 小勒布伦&#xff0c;真*直拍之光。 有一说一&#xff0c;国际乒联对于器材的调整&#xff0c;无论是改低粘度的无机胶水&am…

Docker(七):容器监控工具(Portainer、CAdvisor)

一&#xff1a;轻量级可视化监控工具Portainer 可视化监控工具, 可以通过docker安装&#xff0c;用于管理和监控docker&#xff0c;基本上的docker命令都有对应的按钮来操作。 # always 表示docker重启了该容器也跟着重启 docker run -d --name portainer -p 8000:8000 -p 90…

使用docker部署数据可视化平台Metabase

目前公司没有人力开发数据可视化看板&#xff0c;因此考虑自己搭建开源可视化平台MetaBase。在此记录下部署过程~ 一、镜像下载 docker pull metabase/metabase:latest 运行结果如下&#xff1a; 二、创建容器 docker run -dit --name matebase -p 3000:3000\ -v /home/loc…

将gidp模块、ipam集成到ultralytics项目中实现gidp-yolov8、ipam-yolov8

gdip-yolo与ia-seg都是一种将图像自适应模块插入模型前面,从而提升模型在特定数据下检测能力的网络结构。gdip-yolo提出了gdip模块,可以应用到大雾数据与低亮度数据(夜晚环境),然后用于目标检测训练;ia-seg将ia-yolo中的代码修改了一下修车了ipam模块,应用到低亮度数据(…

柯桥商务口语之怎么样说英语更加礼貌?十个礼貌用语get起来!

当你在国外需要帮助的时候&#xff0c;这些礼貌用语真的是能够帮到你的哦 1.Would/Could you help me? 你可帮助我吗&#xff1f; 相信有些人想请求帮助的时候&#xff0c;一开口就用Can you&#xff0c;这个用在朋友或者熟人上面当然是没有问题的&#xff0c;但是如果是向…

揭秘“金松奖” | 一个金融科技行业的热门解决方案

近日&#xff0c;2023年度第十届“金松奖”金融科技行业评选结果正式揭晓&#xff0c;开源网安凭借「度小满互联网金融开源软件治理解决方案」入选合规科技发展热门方案。 “金松奖”是移动支付网主办的金融科技行业线上评选活动&#xff0c;旨在从企业、产品、方案和案例等多维…

ArcGIS无法链接在线地图或错误: 代理服务器从远程服务器收到了错误地址(验证服务器是否正在运行)。

这几天我们分享了&#xff01; 谷歌卫星影像图归来&#xff01;ArcGIS直连&#xff01;快来获取_谷歌影像lyr-CSDN博客文章浏览阅读666次&#xff0c;点赞11次&#xff0c;收藏9次。大概。_谷歌影像lyrhttps://blog.csdn.net/kinghxj/article/details/137521877一套图源搞定&a…

别找了,这35份Excel自动排班表真的好用!

别再自己做排班表了&#xff0c;调了半天不好看格式还不对。 看看自己需要的是哪些类型的排班表&#xff1f;是公司值班&#xff0c;还是直播排班&#xff0c;还是考勤汇总&#xff0c;总有一个适合你。 刚整理的35份办公常用的排班表&#xff0c;希望能帮到你&#xff01; …

EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网多头注意力多变量时间序列预测

EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网多头注意力多变量时间序列预测 目录 EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网多头注意力多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实…

Pytest精通指南(16)利用skip、skipif跳过用例执行

文章目录 前言skip源码分析skip装饰方法skip装饰类skip装饰模块skipif源码分析skipif装饰方法skipif装饰类skipif装饰模块拓展-用例内部跳过执行 前言 skip: skip用于无条件地跳过测试用例&#xff0c;无论测试环境的状态或条件如何。通常用于那些在任何情况下都不应该执行的测…

深入解析Rivest Cipher 4:理论与实践

title: 深入解析Rivest Cipher 4&#xff1a;理论与实践 date: 2024/4/17 20:30:58 updated: 2024/4/17 20:30:58 tags: 密码学RC4算法流密码密钥调度安全分析优缺点应用实践 第一章&#xff1a;引言 密码学简介&#xff1a; 密码学是研究如何保护通信和信息安全的学科。它涉…

国内外AI programmer 大全集--持续更新

国内&#xff1a; 通义灵码&#xff1a; 公司&#xff1a;阿里巴巴集团旗下的阿里云发布年份&#xff1a;未明确指出具体年份&#xff0c;但已在2024年4月3日前入职并上岗一段时间名称&#xff1a;通义灵码工号&#xff1a;AI001 iFlyCode&#xff1a; 公司&#xff1a;科大…

RabbitMQ-核心特性

已经不需要为RabbitMQ交换机的离去而感到伤心了&#xff0c;接下来登场的是RabbitMQ-核心特性!!! 文章目录 核心特性消息过期机制消息确认机制死信队列 核心特性 消息过期机制 官方文档&#xff1a;https://www.rabbitmq.com/ttl.html 可以给每条消息指定一个有效期&#xf…