人工智能揭示矩阵乘法的新可能性

人工智能揭示矩阵乘法的新可能性


数学家酷爱漂亮的谜题。当你尝试找到最有效的方法时,即使像乘法矩阵(二维数字表)这样抽象的东西也会感觉像玩一场游戏。这有点像尝试用尽可能少的步骤解开魔方——具有挑战性,但也很诱人。除了魔方,每一步可能的步数为 18;对于矩阵乘法,即使在相对简单的情况下,每一步都可以呈现超过 10^12 个选项。

在过去的 50 年里,研究人员以多种方式解决了这个问题,所有这些都是基于人类直觉辅助的计算机搜索。2022 年 10 月,人工智能公司 DeepMind 的一个团队展示了如何从一个新的方向解决这个问题,在《Nature》杂志的一篇论文中报告说,他们已经成功地训练了一个神经网络来发现新的快速矩阵乘法算法。就仿佛 AI 找到了解决极其复杂的魔方的未知策略。

论文链接:https://www.nature.com/articles/s41586-022-05172-4

「这是一个非常巧妙的结果。」哥伦比亚大学计算机科学家 Josh Alman 说,但他和其他矩阵乘法专家也强调,这种人工智能辅助将补充而不是取代现有方法——至少在短期内是这样。「这就像对可能成为突破的事物的概念验证。」Alman 说。结果只会帮助研究人员完成他们的任务。

仿佛是为了证明这一点,《自然》杂志的论文发表三天后,两位奥地利研究人员展示了新旧方法如何相互补充。他们使用传统的计算机辅助搜索来进一步改进神经网络发现的一种算法。

论文链接:https://arxiv.org/pdf/2210.04045.pdf

结果表明,就像解决魔方的过程一样,通往更好算法的道路将充满曲折。

乘法矩阵

矩阵乘法是所有数学中最基本和最普遍的运算之一。要将一对 n×n 矩阵相乘,每个矩阵都有 n^2 个元素,你可以将这些元素以特定组合相乘并相加以生成乘积,即第三个 n×n 矩阵。将两个 n×n 矩阵相乘的标准方法需要 n^3 次乘法运算,因此,例如,一个 2×2 矩阵需要八次乘法。

对于具有数千行和列的较大矩阵,此过程很快就会变得麻烦。但在 1969 年,数学家 Volker Strassen 发现了一种使用七个而不是八个乘法步骤将一对 2×2 矩阵相乘的过程,代价是引入了更多的加法步骤。

如果你只想乘以一对 2×2 矩阵,则 Strassen 算法不必要地复杂化。但他意识到它也适用于更大的矩阵。那是因为矩阵的元素本身可以是矩阵。例如,可以将具有 20,000 行和 20,000 列的矩阵重新设想为一个 2×2 矩阵,其四个元素各为 10,000×10,000 矩阵。然后可以将这些矩阵中的每一个细分为四个 5,000×5,000 块,依此类推。Strassen 可以应用他的方法在此嵌套层次结构的每一层上乘以 2×2 矩阵。随着矩阵大小的增加,减少乘法所节省的成本也会增加。

Strassen 的发现促使人们开始寻找高效的矩阵乘法算法,此后启发了两个不同的子领域。一个侧重于一个原则问题:如果你想象将两个 n×n 矩阵相乘并让 n 趋于无穷大,那么最快的算法中的乘法步骤数如何与 n 成比例?

最佳缩放比例的当前记录 n^2.3728596 属于麻省理工学院计算机科学家 Alman 和 Virginia Vassilevska Williams。(最近发布的预印本报告了使用新技术的微小改进。)但这些算法纯粹是理论上的兴趣,仅在荒谬的大矩阵上胜过 Strassen 等方法。

论文链接:https://arxiv.org/abs/2210.10173

第二个子领域的思考规模较小。在 Strassen 的工作之后不久,以色列裔美国计算机科学家 Shmuel Winograd 表明 Strassen 已经达到了理论极限:不可能用少于七个乘法步骤来乘以 2×2 矩阵。但对于所有其他矩阵大小,所需乘法的最小数量仍然是一个悬而未决的问题。小矩阵的快速算法可能会产生巨大的影响,因为当乘以合理大小的矩阵时,这种算法的重复迭代可能会击败 Strassen 的算法。

论文链接:https://www.sciencedirect.com/science/article/pii/0024379571900097

不幸的是,可能性的数量是巨大的。即使对于 3×3 矩阵,「可能的算法数量也超过了宇宙中的原子数量,」DeepMind 研究员兼新工作的负责人之一 Alhussein Fawzi 说。

面对这些令人眼花缭乱的选项,研究人员通过将矩阵乘法转化为一个看起来完全不同的数学问题——一个计算机更容易处理的问题——取得了进展。可以将两个矩阵相乘的抽象任务表示为一种特定类型的数学对象:称为张量的三维数字数组。然后,研究人员可以将这个张量分解为基本分量的总和,称为「rank-1」张量;这些中的每一个都代表相应矩阵乘法算法中的不同步骤。这意味着找到一个有效的乘法算法相当于最小化张量分解中的项数——项越少,涉及的步骤就越少。

通过这种方式,研究人员发现了新的算法,可以使用比标准 n^3 更少的乘法步骤来乘以许多小矩阵大小的 n×n 矩阵。但是,不仅优于标准而且优于 Strassen 小矩阵算法的算法仍然遥不可及——直到现在。

Game On

DeepMind 团队通过将张量分解变成单人游戏来解决这个问题。他们从 AlphaGo 的深度学习算法入手——AlphaGo 是另一个 DeepMind AI,它在 2016 年学会了玩棋盘游戏 Go,足以击败顶尖的人类棋手。

所有的深度学习算法都是围绕神经网络构建的:人工神经元网络被分类成层,连接强度可以变化,代表每个神经元对下一层神经元的影响程度。这些连接的强度在训练过程的多次迭代中得到调整,在此期间神经网络学习将它接收到的每个输入转换为有助于算法实现其总体目标的输出。

在 DeepMind 的新算法(称为 AlphaTensor)中,输入代表通往有效矩阵乘法方案的步骤。神经网络的第一个输入是原始矩阵乘法张量,其输出是 AlphaTensor 为其第一步选择的 rank-1 张量。该算法从初始输入中减去这个 rank-1 张量,产生一个更新的张量,该张量作为新输入反馈到网络中。重复该过程,直到最终起始张量中的每个元素都减少为零,这意味着没有更多的 rank-1 张量可以取出。

在这一点上,神经网络发现了一个有效的张量分解,因为它在数学上保证了所有 rank-1 张量的总和恰好等于起始张量。到达那里所采取的步骤可以转换回相应的矩阵乘法算法的步骤。

游戏是这样的:AlphaTensor 反复将张量分解为一组 rank-1 分量。每次,如果 AlphaTensor 找到减少步数的方法,它就会获得奖励。但胜利的捷径一点也不直观,就像你有时必须在魔方上拼凑出一张完美有序的脸,然后才能解决整个问题。

该团队现在有了一种算法,理论上可以解决他们的问题。他们只需要先训练它。

新路径

与所有神经网络一样,AlphaTensor 需要大量数据进行训练,但张量分解是一个众所周知的难题。研究人员可以为网络提供有效分解的例子很少。相反,他们通过在更简单的逆问题上进行训练来帮助算法开始:将一堆随机生成的 rank-1 张量相加。

布朗大学计算机科学家 Michael Littman 说:「他们正在使用简单的问题为困难的问题生成更多数据。」将这种向后训练过程与强化学习相结合,其中 AlphaTensor 在寻找有效分解时会产生自己的训练数据,其效果比单独使用任何一种训练方法都要好得多。

DeepMind 团队训练 AlphaTensor 来分解代表矩阵乘法的张量,最高可达 12×12。它寻求用于将普通实数矩阵相乘的快速算法,以及特定于更受约束的设置(称为模 2 运算)的算法。(这是仅基于两个数字的数学,因此矩阵元素只能是 0 或 1,并且 1 + 1 = 0。)研究人员通常从这个更受限制但仍然广阔的空间开始,希望这里发现的算法可以适用于实数矩阵。

训练后,AlphaTensor 在几分钟内重新发现了 Strassen 的算法。然后,它针对每种矩阵大小发现了多达数千种新的快速算法。这些与最著名的算法不同,但乘法步骤数相同。

在少数情况下,AlphaTensor 甚至打破了现有记录。它最令人惊讶的发现发生在模 2 运算中,它发现了一种新算法,可以在 47 个乘法步骤中将 4×4 矩阵相乘,比 Strassen 算法两次迭代所需的 49 个步骤有所改进。它还打破了最著名的 5×5 模 2 矩阵算法,将所需的乘法次数从之前的 98 次记录减少到 96 次。(但这个新记录仍然落后于使用 5×5 矩阵击败 Strassen 算法所需的 91 步。)

这一引人注目的新结果引起了很多兴奋,一些研究人员对基于 AI 的现状改进大加赞赏。但并非矩阵乘法领域中的每个人都对此印象深刻。「我觉得它有点被夸大了,」Vassilevska Williams 说。「这是另一种工具。这不像是,[哦,计算机打败了人类,] 你知道吗?」

研究人员还强调,破纪录的 4×4 算法的直接应用将受到限制:它不仅只在模 2 算法中有效,而且在现实生活中,除了速度之外还有其他重要的考虑因素。

Fawzi 也认为,这仅仅是个开始。「有很大的改进和研究空间,这是一件好事,」他说。

最后的转折

相对于成熟的计算机搜索方法,AlphaTensor 的最大优势也是它最大的弱点:它不受人类直觉的约束,无法判断好的算法是什么样子的,因此它无法解释自己的选择。这使得研究人员很难从其成就中学习。

但这可能并没有看上去那么大的缺点。在 AlphaTensor 结果公布几天后,奥地利林茨大学(JKU)的数学家 Manuel Kauers 和他的研究生 Jakob Moosbauer 报告说又向前迈进了一步。

Manuel Kauers 调整了 DeepMind 的方法以产生进一步的改进。——Jakob Moosbauer

当 DeepMind 论文发表时,Kauers 和 Moosbauer 正在使用传统的计算机辅助搜索来寻找新的乘法算法。但与大多数以新的指导原则重新开始的此类搜索不同,他们的方法通过反复调整现有算法来工作,希望从中节省更多的乘法。以 AlphaTensor 的 5×5 模 2 矩阵算法为起点,他们惊奇地发现,他们的方法在短短几秒钟的计算之后,就将乘法步骤从 96 步减少到了 95 步。

AlphaTensor 还间接帮助他们进行了另一项改进。此前,Kauers 和 Moosbauer 并没有费心去探索 4×4 矩阵的空间,他们认为不可能击败 Strassen 算法的两次迭代。AlphaTensor 的结果促使他们重新考虑,在从头开始计算一周后,他们的方法出现了另一种 47 步算法,与 AlphaTensor 发现的算法无关。「如果有人告诉我们 4×4 有什么值得发现的东西,我们本可以早点做到这一点,」Kauers 说。「但是,好吧,这就是它的工作原理。」

Littman 预计会有更多这样的惊喜,他将这种情况比作跑步者第一次在四分钟内跑完一英里,这一壮举曾被广泛认为是不可能的。「人们就像,[哦,等等,我们可以做到这一点,] 现在很多人都可以做到,」他说。

展望未来,Fawzi 希望推广 AlphaTensor 以解决更广泛的数学和计算任务,就像它的祖先 AlphaGo 最终扩展到其他游戏一样。

Kauers 认为这是将机器学习应用于发现新算法的真正试金石。他指出,寻求快速矩阵乘法算法是一个组合问题,无论有无人工协助,计算机搜索都非常适合。但并不是所有的数学问题都那么容易确定。他说,如果机器学习能够发现一种全新的算法理念,「这将改变游戏规则。」

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/552084.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于GIS、python机器学习技术的地质灾害风险评价与信息化建库应用

结合项目实践案例和科研论文成果进行讲解。入门篇,ArcGIS软件的快速入门与GIS数据源的获取与理解;方法篇,致灾因子提取方法、灾害危险性因子分析指标体系的建立方法和灾害危险性评价模型构建方法;拓展篇,GIS在灾害重建…

IEDA 的各种常用插件汇总

目录 IEDA 的各种常用插件汇总1、 Alibaba Java Coding Guidelines2、Translation3、Rainbow Brackets4、MyBatisX5、MyBatis Log Free6、Lombok7、Gitee IEDA 的各种常用插件汇总 1、 Alibaba Java Coding Guidelines 作用:阿里巴巴代码规范检查插件,…

JavaScript之分时函数、分时间段渲染页面、提高用户体验、参数归一化、高阶函数、分段、appendChild、requestIdleCallback

MENU 前言效果图html原始写法优化方式一(参数归一化)优化方式二(当浏览器不支持requestIdleCallback方法的时候)优化方式三(判断环境) 前言 当前需要向页面插入十万个div元素,如果使用普通的渲染方式,会造成延迟。这时候就需要通过分时函数来实现渲染了。…

[element] 简单封装一个表格展示

简单封装 如果你想呈现一个表格,直接复制案例的话是这样的,圈出来的你需要写进入,麻烦 这时候把需要显示的列数据弄成一个对象数组, 给它列名和标题就行 记得这个prop和源数据的prop要对应!! const columns [{label: "日期",prop: date},{label: "姓名",…

【管理咨询宝藏72】MBB大型城投集团能源板块行业分析报告

本报告首发于公号“管理咨询宝藏”,如需阅读完整版报告内容,请查阅公号“管理咨询宝藏”。 【管理咨询宝藏72】MBB大型城投集团能源板块行业分析报告 【格式】PDF版本 【关键词】战略规划、商业分析、管理咨询、MBB顶级咨询公司 【强烈推荐】 这是一套…

通讯录的实现(顺序表)

前言:上篇文章我们讲解的顺序表以及顺序表的具体实现过程,那么我们的顺序表在实际应用中又有什么作用呢?今天我们就基于顺序表来实现一下通讯录。 目录 一.准备工作 二.通讯录的实现 1.通讯录的初始化 2.插入联系人 3.删除联系人 4.…

Arthas实战教程:定位Java应用CPU过高与线程死锁

引言 在Java应用开发中,我们可能会遇到CPU占用过高和线程死锁的问题。本文将介绍如何使用Arthas工具快速定位这些问题。 准备工作 首先,我们创建一个简单的Java应用,模拟CPU过高和线程死锁的情况。在这个示例中,我们将编写一个…

OpenHarmony C/C++三方库移植适配

简介 众所周知,C/C三方库相对与JS/ETS的三方组件来说,其运行效率高。那如何将一个C/C三方库移植到OH系统上呢?本文将介绍如何快速高效的移植一个C/C三方库到OpenHarmony上。 C/C三方库适配问题与解决方案 由上图可以看出,三方库…

Ypay源支付前端美化模板

功能: 首页加了运行时间,加了首页一言打字效果,加了访问次数,还有底部也适当的加了一点美化 而且加了一个播放器功能,可以自定义歌曲之类的 完美契合于源支付 直接上传主题包使用即可 演示图: 使用: 请不要在后台…

C语言学习笔记之指针(一)

目录 什么是指针? 指针和指针类型 指针的类型 指针类型的意义 指针-整数 指针的解引用 指针 - 指针 指针的关系运算 野指针 什么是野指针? 野指针的成因 如何规避野指针? 二级指针 什么是指针? 在介绍指针之前&#…

Ubuntu上安装Chrome浏览器

安装步骤 1.下载安装chrome安装包 wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb2.安装Chrome浏览器 sudo dpkg -i google-chrome-stable_current_amd64.debsudo apt-get -f install3.启动Chrome浏览器 查看收藏夹里的Chrome图标 单击C…

LeetCode刷题总结 | 图论3—并查集

并查集理论基础 1.背景 首先要知道并查集可以解决什么问题呢? 并查集常用来解决连通性问题。大白话就是当我们需要判断两个元素是否在同一个集合里的时候,我们就要想到用并查集。 并查集主要有两个功能: 将两个元素添加到一个集合中。判…

python怎么连接oracle

一:弄清版本,最重要!!! 首先安装配置时,必须把握一个点,就是版本一致!包括:系统版本,python版本,oracle客户端的版本,cx_Oracle的版本…

IAR 使用笔记(IAR BIN大小为0异常解决)

烧写 由于芯片的内部SPI FLASH的0级BOOT 程序起到到开启JTAG SW 仿真功能,一旦内部SPI FLASH存储的BL0启动代码被损坏,芯片的JTAG 将不能被连接。所以对BL0的烧写需要谨慎,烧写BL0过程保证芯片不断电。 如果烧写了多备份的启动代码&#xff…

深度学习架构(CNN、RNN、GAN、Transformers、编码器-解码器架构)的友好介绍。

一、说明 本博客旨在对涉及卷积神经网络 (CNN)、递归神经网络 (RNN)、生成对抗网络 (GAN)、转换器和编码器-解码器架构的深度学习架构进行友好介绍。让我们开始吧!! 二、卷积神经网络…

【Java探索之旅】掌握数组操作,轻松应对编程挑战

🎥 屿小夏 : 个人主页 🔥个人专栏 : Java编程秘籍 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一、数组巩固练习1.1 数组转字符串1.2 数组拷贝1.3 求数组中的平均值1.4 查找数组中指…

手写签名功能(vue3)

手写签名功能&#xff08;vue3&#xff09; 效果 显示效果 签名版效果 代码 代码引入 写成子组件形式&#xff0c;直接引入即可 <signature-features />代码结构 signatureFeatures&#xff1a;签名的显示效果 vueEsign&#xff1a;画板 xnSignName&#xff1a;打开…

Ubuntu修改DNS

【永久修改DNS】 临时修改DNS的方法是在 /etc/resolv.conf 添加&#xff1a;nameserver 8.8.8.8 nameserver 8.8.8.8 注意到/etc/resolv.conf最上面有这么一行&#xff1a; DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN 说明重启之后这个文件会被自动…

关于系统数据缓存的思考以及设计

文章目录 引言案例A项目B项目 分析我的实现总结 引言 缓存&#xff0c;这是一个经久不衰的话题&#xff0c;它通过“空间换时间”的战术不仅能够极大提升处理查询性能还能很好的保护底层资源。最近针对系统数据缓存的优化后&#xff0c;由于这是一个通用的场景并且有了一点心得…

力扣练习题(2024/4/15)

1打家劫舍 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相邻的房屋在同一晚上被小偷闯入&#xff0c;系统会自动报警。 给定一个代表每个房屋…