RocketMQ 在业务消息场景的优势详解

作者:隆基

01 消息场景

RocketMQ 5.0 是消息事件流一体的实时数据处理平台,是业务消息领域的事实标准,很多互联网公司在业务消息场景会使用 RocketMQ。

在这里插入图片描述

我们反复提到的“消息、业务消息”,指的是分布式应用解耦,是 RocketMQ 的业务基本盘。通过本文,我们将深入了解 RocketMQ 5.0 在业务消息场景的优势能力,了解为什么 RocketMQ 能够成为业务消息领域的事实标准。

RocketMQ 在业务消息领域的经典场景是应用解耦,这也是 RocketMQ 诞生初期解决阿里电商分布式互联网架构的核心场景,主要承担分布式应用(微服务)的异步集成,达到应用解耦的效果。解耦是所有的软件架构最重要的追求。

分布式应用(微服务)采用同步 RPC 与异步消息的对比。比如在业务系统中,有三个上游应用与 4 个下游应用,采用同步 RPC 的方式,会有 3*4 的依赖复杂度;而采用异步消息的方式则可以化繁为简,简化为 3+4 的依赖复杂度,从乘法简化为加法。

通过引入消息队列实现应用的异步集成可以获得四大解耦优势。

  • 代码解耦

极大提升业务敏捷度。如果用同步调用的方式,每次扩展业务逻辑都需要上游应用显式调用下游应用接口,代码直接耦合,上游应用要做变更发布,业务迭代互相掣肘。而通过使用消息队列扩展新的业务逻辑,只需要增加下游应用订阅某个 Topic,上下游应用互相透明,业务可以保持灵活独立快速迭代。

  • 延迟解耦

如果使用同步调用的方式,随着业务逻辑的增加,用户操作的远程调用次数会越来越多,业务响应越来越慢,性能衰减,业务发展不可持续。而使用消息队列,无论增加多少业务,上游应用只需调用一次消息队列的发送接口即可响应线上用户,延迟为常量,基本在 5ms 以内。

  • 可用性解耦

如果使用同步调用的方式,任何下游业务不可用都会导致整个链路失败。该种结构下类似于串联电路,甚至在部分调用失败的情况下,还会出现状态不一致。而采用 RocketMQ 进行异步集成,只要 RocketMQ 服务可用,用户的业务操作便可用。RocketMQ 服务通过多对主备组成的 broker 集群提供,只要有一对主备可用,则整体服务可用,作为基础软件,可用性远大于普通的业务应用,下游应用的业务推进都可以通过 MQ 的可靠消息投递来达成。

  • 流量解耦

即削峰填谷。如果采用同步调用的方式,上下游的容量必须对齐,否则会出现级联不可用。容量完全对齐需要投入大量精力进行全链路压测与更多机器成本。而通过引入 RocketMQ,基于 RocketMQ 亿级消息的堆积能力,对于实时性要求不高的下游业务,可以尽最大努力消费,既保证了系统稳定性,又降低了机器成本与研发运维成本。

02 基础特性

阿里的交易应用流程为:用户在淘宝上下单时会调用交易应用创建订单,交易应用将订单落到数据库,然后生产一条订单创建的消息到 RocketMQ,返回给终端用户订单创建成功的接口。完成的交易流程推进则是依赖 RocketMQ 将订单创建消息投递给下游应用,会员应用收到订单消息,需要给买家赠送积分、淘金币,触发用户激励相关的业务。购物车应用则是负责删除在购物车里面的商品,避免用户重复购买。同时,支付系统与物流系统也都会基于订单状态的变更,推进支付环节与履约环节。

在这里插入图片描述

过去十年多年,阿里电商业务持续蓬勃发展,交易的下游应用已达数百个,并且还在不断增加。基于 RocketMQ 的电商架构极大提高了阿里电商业务的敏捷度,上游核心的交易系统完全无需关心哪些应用在订阅交易消息,交易应用的延迟与可用性也一直保持在很高水准,只依赖少量的核心系统与 RocketMQ,不会受数百个下游应用的影响。

交易的下游业务类型不一,有大量的业务场景不需要实时消费交易数据,比如物流场景能容忍一定的延迟。通过 RocketMQ 的亿级堆积能力,极大降低了机器成本。RocketMQ 的 shared-nothing 架构具备无限横向扩展的能力,已经连续 10 年支撑了高速增长的双十一消息峰值,在几年前达到亿级 TPS。

03 增强能力

经典场景下,RocketMQ 相对于其他消息队列,拥有诸多差异化优势与增强。

首先,稳定性方面,稳定性交易是金融场景最重要的需求。 RocketMQ 的稳定性不仅限于高可用架构,而是通过全方位的产品能力来构建稳定性竞争力。比如重试队列,当下游消费者因为业务数据不 ready 或其他原因导致某条消息消费失败,RocketMQ 不会因此阻塞消费,而是能将此消息加入到重试队列,然后按时间衰减重试。如果某条消息因为某些因素经过十几次重试始终无法消费成功,则 RocketMQ 会将它转到死信队列,用户可以通过其他手段来处理失败的消息,是金融行业的刚需。

在这里插入图片描述

同时,消费成功后如果因为代码 bug 导致业务不符合预期,应用可以对业务 bug 进行修复并重新发布,然后应用消息回溯的功能将消息拉回到之前的时间点,让业务按照正确逻辑重新处理。

RocketMQ 的消费实现机制采用自适应拉模式的消费,在极端的场景下能够避免消费者被大流量打垮。同时,在消费者的 SDK 里,做了缓存本地的消息数量与消息内存占用的阈值保护,防止消费应用的内存风险。

其次,RocketMQ 还具备优秀的可观测能力,是稳定性的重要辅助手段。 RocketMQ 是业界第一个提供消息消息级别可观测能力的消息队列,每条消息都可以带上业务主键,比如在交易场景,用户可以将订单 ID 作为消息的业务主键。当某个订单的业务需要排查,用户可以基于订单 ID 查询该条消息的生成时间以及消息内容。消息的可观测数据还能继续下钻,通过消息轨迹查看消息由哪台生产者机器发送、由哪些消费者机器在什么时间消费、消费状态是成功或失败等。

在这里插入图片描述
在这里插入图片描述

除此之外,它支持了几十种核心的度量数据, 包括集群生产者流量分布、慢消费者排行、消费的平均延迟、消费堆积数量、消费成功率等。基于丰富的指标,用户可以搭建更加完善的监控报警体系来进一步加固稳定性。

在这里插入图片描述
在这里插入图片描述

为了支撑更灵活的应用架构,RocketMQ 在生产与消费等关键接口提供了多种模式。

生产者接口 RocketMQ 同时提供了同步发送接口与异步发送接口。同步发送是最常用的模式,业务流程的编排是串行的,在应用发完消息、Broker 完成存储后返回成功后,应用再执行下一步逻辑。然而在某些场景下,完成业务涉及多个远程调用,应用为了进一步降低延迟、提高性能,会采用全异步化的方式,并发发出远程调用(可以是多次发消息或 RPC 的组合),异步收集结果推,进业务逻辑。

在这里插入图片描述

消费者的接口方面也提供了两种方式:

在这里插入图片描述

  • 监听器模式被动消费

这是目前使用最广泛的方式,用户无需关心客户端何时去 Broker 拉取消息,何时向 Broker 发出消费成功的确认,也无需维护消费线程池、本地消息缓存等细节。只需要写一段消息监听器的业务逻辑,根据业务执行结果返回 Success 或 Failure。它属于全托管的模式,用户可以专注于业务逻辑的编写,而将实现细节完全委托给 RocketMQ 客户端。

  • 主动消费模式

将更多的自主权交给用户,也称为 Simple Consumer。在该种模式下,用户可以自己决定何时去 Broker 读取消息、何时发起消费确认消息。对业务逻辑的执行线程也有自主可控性,读取完消息后,可以将消费逻辑放在自定义的线程池执行。在某些场景下,不同消息的处理时长与优先级会有所不同,采用 Simple Consumer 的模式,用户可根据消息的属性、大小做二次分发,隔离到不同的业务线程池执行处理。该模式还提供了消息粒度消费超时时间的设定能力,针对某些消费耗时长的消息,用户能够调用 change Invisible Duration 接口,延长消费时间,避免超时重试。

04 总结

  • 消息经典场景:应用解耦;

在这里插入图片描述

  • RocketMQ 基础特性:发布订阅、可靠消息、亿级堆积、无限扩展;
  • 业务消息场景的增强能力:稳定性、可观测、多样化接口。

RocketMQ 学习社区体验地址

RocketMQ 学习社区重磅上线!AI 互动,一秒了解 RocketMQ 功能源码。RocketMQ 学习社区是国内首个基于 AIGC 提供的知识服务社区,旨在成为 RocketMQ 学习路上的“贴身小二”。

PS:RocketMQ 社区以 RocketMQ 5.0 资料为主要训练内容,持续优化迭代中,回答内容均由人工智能模型生成,其准确性和完整性无法保证,且不代表 RocketMQ 学习社区的态度或观点。

立即体验 RocketMQ 学习社区(建议 PC 端体验完整功能)

https://rocketmq-learning.com/

【活动】一键体验 RocketMQ 六大生产环境

免费试用+30 秒一键体验,低门槛、快速、高效、易操作,带你了解“历经万亿级数据洪峰考验”的云消息队列 RocketMQ!

点击此处,立即参与活动!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/55163.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

nmake编译Qt第三方库出现无法打开包含文件type_traits

最近需要为个人项目ShaderLab添加内嵌的代码编辑窗口功能,支持语法高亮和Intellisense,最初使用了QCodeEditor,发现这个第三方的库对词法分析的实现效果不太行. 代码换行后直接缩进到首行,无法定位到前一句的首行 考虑换QScintilla&#xff…

Java 基础进阶总结(一)反射机制学习总结

文章目录 一、初识反射机制1.1 反射机制概述1.2 反射机制概念1.3 Java反射机制提供的功能1.4 反射机制的优点和缺点 二、反射机制相关的 API2.1 一、初识反射机制 1.1 反射机制概述 JAVA 语言是一门静态语言,对象的各种信息在程序运行时便已经确认下来了&#xff0…

微信小程序防盗链referer问题处理

公司使用百度云存储一些资源,然后现在要做防盗链,在CDN加入Referer白名单后发现PC是正常的,微信小程序无法正常访问资源了。然后是各种查啊,然后发现是微信小程序不支持Referer的修改,且在小程序开发工具是Referer是固…

优先级队列 (堆)

目录 一,堆的概念 二, 堆的存储结构 三, 堆的实现 3.1 shiftDown() 3.2 shiftUp() 3.3 shiftDown 与 shiftUp 的时间复杂度 四,堆排序 一,堆的概念 堆常用于实现优先队列(Priority Queue&#xff0…

偶数科技与白鲸开源完成兼容性认证

近日,偶数科技自主研发的云原生分布式数据库 OushuDB v5.0 完成了与白鲸开源集成调度工具 WhaleStudio v2.0 的兼容性相互认证测试。 测试结果显示,双方产品相互良好兼容,稳定运行、安全,同时可以满足性能需求,为企业级…

git从主仓库同步到fork仓库

git从主仓库同步到fork仓库 1. fork远程仓库到本地仓库2. 将远程仓库添加到本地3. 更新本地项目主库地址4. 将远程仓库更新到本地仓库5. 将本地仓库合到远程分支 1. fork远程仓库到本地仓库 方式一:通过git命令 git clone fork库地址方式二:通过git页面…

【100天精通python】Day22:字符串常用操作大全

目录 专栏导读 一、 字符串常用操作 1 拼接字符串 2 计算字符串长度 3 截取字符串 4 分割合并字符串 5 检索字符串 6 字母的大小写转换 7 去除字符串的空格和特殊字符 8 格式化字符串 二 、字符串编码转换 2.1 使用encode()方法编码 2.2 使用decoder()方法编码 专栏…

mysql的json处理

写在前面 需要注意,5.7以上版本才支持,但如果是生产环境需要使用的话,尽量使用8.0版本,因为8.0版本对json处理做了比较大的性能优化。你你可以使用select version();来查看版本信息。 本文看下MySQL的json处理。在正式开始让我们先…

HarmonyOS 开发基础(四) 子父组件双向绑定

一、知识点在代码注释里 index.ets // 导出方式直接从文件夹 import MyInput from "../common/commons/myInput" Entry Component /* 组件可以基于struct实现,组件不能有继承关系,struct可以比class更加快速的创建和销毁。*/ struct Index {…

【hive】Install hive using mysql as hive metadata service

文章目录 一. Requirements二. Installing Hive from a Stable Release三. Running Hive四. Running Hive CLI五.Running HiveServer2 and Beeline1. 下载安装mysql2. 下载mysql驱动3. 配置hive-site.xml4. 初始化元数据库5. 通过beeline进行连接 一. Requirements Users are s…

BES 平台 SDK之LED的配置

本文章是基于BES2700 芯片,其他BESxxx 芯片可做参考,如有不当之处,欢迎评论区留言指出。仅供参考学习用! BES 平台 SDK之代码架构讲解二_谢文浩的博客-CSDN博客 关于SDK 系统框架简介可参考上一篇文章。链接如上所示&#xff01…

防火墙监控工具

防火墙监控是跟踪在高效防火墙性能中起着关键作用的重要防火墙指标,防火墙监控通常应包括: 防火墙日志监控防火墙规则监控防火墙配置监控防火墙警报监控 防火墙监控服务的一个重要方面是它应该是主动的。主动识别内部和外部安全威胁有助于在早期阶段识…

Devops系统中jira平台迁移

需求:把aws中的devops系统迁移到华为云中,其中主要是jira系统中的数据迁移,主要方法为在华为云中建立一套 与aws相同的devops平台,再把数据库和文件系统中的数据迁移,最后进行测试。 主要涉及到的服务集群CCE、数据库mysql、弹性文件服务SFS、数据复制DRS、弹性负载均衡ELB。 迁…

你知道HTTP与HTTPS有什么区别吗?

作者:Insist-- 个人主页:insist--个人主页 作者会持续更新网络知识和python基础知识,期待你的关注 目录 一、什么是HTTP? 二、什么是HTTPS? 三、HTTPS 的工作原理 1、客户端发起 HTTPS 请求 2、服务端的配置 3、…

2023年第四届“华数杯”数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常检测 异常…

Arcgis 分区统计majority参数统计问题

利用Arcgis 进行分区统计时,需要统计不同矢量区域中栅格数据的众数(majority),出现无法统计majority参数问题解决 解决:利用copy raster工具,将原始栅格数据 64bit转为16bit

大数据课程E1——Flume的概述

文章作者邮箱:yugongshiyesina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解Ganglia的概念; ⚪ 了解Ganglia的拓扑结构和执行流程; ⚪ 掌握Ganglia的安装操作; 一、简介 1. 概述 1. Flume原本是由Cloude…

MySQL处理客户端请求

文章目录 一、连接管理二、解析与优化1、查询缓存2、语法解析3、查询优化 简单来说 MySQL 主要分为 Server 层和存储引擎层: Server 层:主要包括连接器、查询缓存、分析器、优化器、执行器等,所有跨存储引擎的功能都在这一层实现&#xff0c…

吃透《西瓜书》第四章 决策树定义与构造、ID3决策树、C4.5决策树、CART决策树

目录 一、基本概念 1.1 什么是信息熵? 1.2 决策树的定义与构造 二、决策树算法 2.1 ID3 决策树 2.2 C4.5 决策树 2.3 CART 决策树 一、基本概念 1.1 什么是信息熵? 信息熵: 熵是度量样本集合纯度最常用的一种指标,代表一个系统中蕴…

Android性能优化—ANR问题分析

一、ANR是什么? ANR(Application Not responding),是指应用程序未响应,Android系统对于一些事件需要在一定的时间范围内完成,如果超过预定时间能未能得到有效响应或者响应时间过长,都会造成ANR。可以简单的理解为应用…