2024五一杯数学建模C题思路分析

文章目录

  • 1 赛题思路
  • 2 比赛日期和时间
  • 3 组织机构
  • 4 建模常见问题类型
    • 4.1 分类问题
    • 4.2 优化问题
    • 4.3 预测问题
    • 4.4 评价问题
  • 5 建模资料

1 赛题思路

(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog

2 比赛日期和时间

报名截止时间:2024年4月30日(周二)24:00

比赛开始时间:2024年5月1日(周三)10:00

比赛结束时间:2024年5月4日(周六)12:00

3 组织机构

数学建模竞赛是一项模拟面对实际问题寻求解决方案的活动,是一次近似于“真刀真枪”的创新探索性实践训练。在丰富并活跃学生课外生活活动的同时,数学建模竞赛有助于训练学生的想象力、洞察力和创造力,有助于培养学生团结合作组织能力和查阅文献、收集资料、文字表达能力,有助于受到科学研究的基本训练。

五一数学建模竞赛是大学生自发组织的全国性数学建模竞赛,2023 年第二十届五一数学建模竞赛吸引了近 5800 支队伍、1.64 万多名学生参赛。五一数学建模竞赛的题目主要由工程技术、经济管理、社会生活等领域中的实际问题抽象加工而成,没有事先设定的标准答案,留有充分余地供参赛者发挥聪明才智。历届赛题大多数都来自企事业的实际问题或科研项目。这些问题的解决带来了良好的经济效益和社会效益。

4 建模常见问题类型

趁现在赛题还没更新,A君给大家汇总一下建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法A君也相应给出

分别为:

  • 分类模型
  • 优化模型
  • 预测模型
  • 评价模型

4.1 分类问题

判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

4.2 优化问题

线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

(1)两个以上的目标函数;
(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:

Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;

4.3 预测问题

回归拟合预测

拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.

BP神经网络预测

BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

支持向量机法

支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。

4.4 评价问题

层次分析法

是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

优劣解距离法

又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

模糊综合评价法

是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

灰色关联分析法(灰色综合评价法)

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

因子分析法(降维)

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

BP神经网络综合评价法

是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

5 建模资料

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/551318.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux中用户通过系统调用实现硬件驱动全流程

驱动全流程: 以基于设备树、Pinctrl、gpio子系统,打开一个字符设备为例: 1、通过系统调用open进入内核 当我们在用户空间调用open之后,应用程序会使用系统调用指令(在上图中可看到,ARM架构中软中断汇编指…

【Qt】:网络编程

网络编程 一.UDP Socket1.回显服务器2.回显客户端 二.TCP Socket1.回显服务器2.回显客户端 三.HTTP Client1.常见的APL2.给服务器发送⼀个GET请求. 四.音视频 前置知识:网络。如果不了解,可以看我的博客网络部分。 在进⾏⽹络编程之前,需要在项⽬中的 .p…

使用两台主机实现博客的搭建

1.运行环境 这里的主机IP是自己虚拟器的IP。 主机主机名系统服务192.168.179.128Server-WebLinuxWeb192.168.179.129Server-NFSDNSLinuxNFS/DNS 2.基础配置 1.配置主机名,静态IP地址 2.开启防火墙并配置 3.部分开启SElinux并配置 4.服务器之间使用同ntp.aliyun.com…

设计模式之状态模式(下)

3)共享状态 1.概述 在某些情况下,多个环境对象可能需要共享同一个状态,如果希望在系统中实现多个环境对象共享一个或多个状态对象,那么需要将这些状态对象定义为环境类的静态成员对象。 2.案例 背景:要求两个开关对…

本地做好准备上传到Git分支,发现git上已经更新了,上传到dev分支

git add . git commit -m 备注 git pull --rebase origin dev 拉取dev上的代码合并到本地 git push -u origin dev推到远程dev上(注意着可能不是最后一步,先看完) 如果报错,意思是本地没有dev分支,没办法上传到git上…

获取钉钉群的 chatId

1、地址 获取地址 在代码发钉钉的地方找到 corpId。 填上后,会出现一个二维码,使用钉钉扫描二维码,就会出现你所在的群,点击,就能获取到 chatId

数据结构——单链表(C语言版)

文章目录 一、链表的概念及结构二、单链表的实现SList.h链表的打印申请新的结点链表的尾插链表的头插链表的尾删链表的头删链表的查找在指定位置之前插入数据在指定位置之后插入数据删除pos结点删除pos之后的结点销毁链表 三、完整源代码SList.hSList.ctest.c 一、链表的概念及…

自定义鼠标软件 SteerMouse最新完整激活版

SteerMouse是一款实用的Mac OS X系统辅助工具,可以帮助用户自定义鼠标和触控板的设置,提高使用效率。它提供了多种功能,如自定义按钮、滚轮和光标速度,以及调整灵敏度等,使用户能够根据自己的需求和习惯进行优化。 Ste…

振弦式裂缝计安装指南:使用灌浆锚头安装法

振弦式表面裂缝计作为一种精密的测量设备,在土木工程、建筑结构监测等领域发挥着重要的作用。为了确保裂缝计能够准确、稳定地工作,其安装过程尤为重要。本文将详细介绍振弦式表面裂缝计灌浆锚头的安装步骤,帮助大家更好地完成安装工作。 步骤…

启明智显技术分享|HMI工业级芯片Model3(简称M3芯片)PSRAM使用指南及PSRAM溢出如何进行问题定位

Model3芯片简介: 启明智显发布的HMI工业级芯片Model3(简称M3芯片)是一款高性能的显示交互和智能控制 MCU,采用国产自主高算力 RISC-V 内核,内置片上 1MB 大容量 SRAM 以及 64Mb PSRAM,并提供丰富的互联外设…

李彦宏官宣第二届“文心杯”创业大赛,最高投资奖励翻5倍达5000万

4月16日,百度创始人、董事长兼首席执行官李彦宏在Create 2024百度AI开发者大会上宣布,第二届“文心杯”创业大赛正式启动,参赛选手有机会获得最高5000万人民币投资。 李彦宏在Create 2024百度AI开发者大会的演讲主题是“人人都是开发者”&…

伦敦站:电子科技大学2024年全球人才推介会诚邀学者报名参会!

2024年4月24日,电子科技大学访英代表团一行将在伦敦举办人才推介交流会。届时,电子科技大学嘉宾将现场推介学校办学和人才队伍建设情况,宣讲学校人才引进政策,并与参会学者进行互动交流与洽谈。现热忱欢迎伦敦及周边地区学者报名参…

怎么申请OV证书

不同于DV SSL证书申请只需要验证域名所有权,申请OV SSL证书除了会验证域名之外,同时还会对申请企业的组织信息进行验证。本篇就给大家介绍一下如何申请OV SSL证书。 目前DV SSL证书和OV SSL证书的区别还是比较大的,DV和OV的区别:…

红帽认证考试流程指导

参加红帽认证考试涉及以下三个流程帐号和证件的准备 考试信息的填写 证书关联与下载 帐号和证件的准备RHN 帐号注册 在参加红帽官方培训和认证考试前需要您提前注册好红帽帐号(RHN) 访问 此页面 ,随后点击 Register for a Red Hat account 链接进行注册 注册时以下条…

BoostCompass( 查找功能实现 )

阅读导航 一、查找功能基本思路二、详细代码三、代码介绍四、运行结果 一、查找功能基本思路 通过实现一个基于倒排索引的搜索引擎,来提供高效、准确的搜索服务。其核心在于快速准确地从大量文档中检索出与用户查询关键词相关的文档,并按照相关性对结果…

【计算机考研】「软件工程」VS「电子信息」专硕有什么不同?

就今年的24国考来说,计算机技术(085404)能报的只是比计算机科学与技术少那么一点点(因为“计算机类”它都可以报,只有写计算机科学与技术的报不了)相对于其他天坑专业来说还是好很多的! 本人双…

制造企业研发设计资源用共享云桌面集中管控有哪些优势?

在制造企业上云的过程中,因为它们多用3D设计软件,所以选择一款高效、稳定、安全的云桌面产品显得尤为重要。云飞云共享云桌面作为一种新型的云桌面产品,正逐渐受到越来越多制造企业的青睐。那么,制造企业为什么要选云飞云共享云桌…

PaddleOCR训练自己模型(2)----参数配置及训练

一、介绍 paddleocr分为文字定位(Det)和文字识别(Rec)两个部分 二、定位模型训练 (1)Det预训练模型下载:https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_det_train.tar (2)下载完之后,…

(十一)C++自制植物大战僵尸游戏客户端更新实现

植物大战僵尸游戏开发教程专栏地址http://t.csdnimg.cn/cFP3z 更新检查 游戏启动后会下载服务器中的版本号然后与本地版本号进行对比,如果本地版本号小于服务器版本号就会弹出更新提示。让用户选择是否更新客户端。 在弹出的更新对话框中有显示最新版本更新的内容…

React-hooks:useRef

useRef文档 useRef 是一个ReactHook,它能帮助引用一个不需要渲染的值。 const ref useRef(initialValue)参数 initialValue:ref对象的 current 属性的初始值,可以是任意类型的值,这个参数在首次渲染后被忽略。 返回值 useRe…