软件杯 深度学习图像修复算法 - opencv python 机器视觉

文章目录

  • 0 前言
  • 2 什么是图像内容填充修复
  • 3 原理分析
    • 3.1 第一步:将图像理解为一个概率分布的样本
    • 3.2 补全图像
  • 3.3 快速生成假图像
    • 3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构
    • 3.5 使用G(z)生成伪图像
  • 4 在Tensorflow上构建DCGANs
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学图像修复算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 什么是图像内容填充修复

内容识别填充(译注: Content-aware fill ,是 photoshop
的一个功能)是一个强大的工具,设计师和摄影师可以用它来填充图片中不想要的部分或者缺失的部分。在填充图片的缺失或损坏的部分时,图像补全和修复是两种密切相关的技术。有很多方法可以实现内容识别填充,图像补全和修复。

  • 首先我们将图像理解为一个概率分布的样本。
  • 基于这种理解,学*如何生成伪图片。
  • 然后我们找到最适合填充回去的伪图片。

在这里插入图片描述

自动删除不需要的部分(海滩上的人)
在这里插入图片描述

最经典的人脸补充

补充前:

在这里插入图片描述

补充后:
在这里插入图片描述

3 原理分析

3.1 第一步:将图像理解为一个概率分布的样本

你是怎样补全缺失信息的呢?

在上面的例子中,想象你正在构造一个可以填充缺失部分的系统。你会怎么做呢?你觉得人类大脑是怎么做的呢?你使用了什么样的信息呢?

在博文中,我们会关注两种信息:

语境信息:你可以通过周围的像素来推测缺失像素的信息。

感知信息:你会用“正常”的部分来填充,比如你在现实生活中或其它图片上看到的样子。
两者都很重要。没有语境信息,你怎么知道填充哪一个进去?没有感知信息,通过同样的上下文可以生成无数种可能。有些机器学*系统看起来“正常”的图片,人类看起来可能不太正常。
如果有一种确切的、直观的算法,可以捕获前文图像补全步骤介绍中提到的两种属性,那就再好不过了。对于特定的情况,构造这样的算法是可行的。但是没有一般的方法。目前最好的解决方案是通过统计和机器学习来得到一个类似的技术。

在这里插入图片描述

从这个分布中采样,就可以得到一些数据。需要搞清楚的是PDF和样本之间的联系。

在这里插入图片描述

从正态分布中的采样

在这里插入图片描述
2维图像的PDF和采样。 PDF 用等高线图表示,样本点画在上面。

3.2 补全图像

首先考虑多变量正态分布, 以求得到一些启发。给定 x=1 , 那么 y 最可能的值是什么?我们可以固定x的值,然后找到使PDF最大的 y。
在这里插入图片描述
在多维正态分布中,给定x,得到最大可能的y

这个概念可以很自然地推广到图像概率分布。我们已知一些值,希望补全缺失值。这可以简单理解成一个最大化问题。我们搜索所有可能的缺失值,用于补全的图像就是可能性最大的值。
从正态分布的样本来看,只通过样本,我们就可以得出PDF。只需挑选你喜欢的 统计模型, 然后拟合数据即可。
然而,我们实际上并没有使用这种方法。对于简单分布来说,PDF很容易得出来。但是对于更复杂的图像分布来说,就十分困难,难以处理。之所以复杂,一部分原因是复杂的条件依赖:一个像素的值依赖于图像中其它像素的值。另外,最大化一个一般的PDF是一个非常困难和棘手的非凸优化问题。

3.3 快速生成假图像

在未知概率分布情况下,学习生成新样本

除了学 如何计算PDF之外,统计学中另一个成熟的想法是学 怎样用 生成模型
生成新的(随机)样本。生成模型一般很难训练和处理,但是后来深度学*社区在这个领域有了一个惊人的突破。Yann LeCun 在这篇 Quora
回答中对如何进行生成模型的训练进行了一番精彩的论述,并将它称为机器学习领域10年来最有意思的想法。

3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构

使用微步长卷积,对图像进行上采样

在这里插入图片描述
现在我们有了微步长卷积结构,可以得到G(z)的表达,以一个向量z∼pz 作为输入,输出一张 64x64x3 的RGB图像。

在这里插入图片描述

3.5 使用G(z)生成伪图像

基于DCGAN的人脸代数运算 DCGAN论文 。

在这里插入图片描述

4 在Tensorflow上构建DCGANs

部分代码:

def generator(self, z):
    self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*4*4, 'g_h0_lin', with_w=True)

    self.h0 = tf.reshape(self.z_, [-1, 4, 4, self.gf_dim * 8])
    h0 = tf.nn.relu(self.g_bn0(self.h0))

    self.h1, self.h1_w, self.h1_b = conv2d_transpose(h0,
        [self.batch_size, 8, 8, self.gf_dim*4], name='g_h1', with_w=True)
    h1 = tf.nn.relu(self.g_bn1(self.h1))

    h2, self.h2_w, self.h2_b = conv2d_transpose(h1,
        [self.batch_size, 16, 16, self.gf_dim*2], name='g_h2', with_w=True)
    h2 = tf.nn.relu(self.g_bn2(h2))

    h3, self.h3_w, self.h3_b = conv2d_transpose(h2,
        [self.batch_size, 32, 32, self.gf_dim*1], name='g_h3', with_w=True)
    h3 = tf.nn.relu(self.g_bn3(h3))

    h4, self.h4_w, self.h4_b = conv2d_transpose(h3,
        [self.batch_size, 64, 64, 3], name='g_h4', with_w=True)

    return tf.nn.tanh(h4)

def discriminator(self, image, reuse=False):
    if reuse:
        tf.get_variable_scope().reuse_variables()

    h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
    h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
    h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
    h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
    h4 = linear(tf.reshape(h3, [-1, 8192]), 1, 'd_h3_lin')

    return tf.nn.sigmoid(h4), h4

当我们初始化这个类的时候,将要用到这两个函数来构建模型。我们需要两个判别器,它们共享(复用)参数。一个用于来自数据分布的小批图像,另一个用于生成器生成的小批图像。

self.G = self.generator(self.z)
self.D, self.D_logits = self.discriminator(self.images)
self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

接下来,我们定义损失函数。这里我们不用求和,而是用D的预测值和真实值之间的交叉熵(cross
entropy),因为它更好用。判别器希望对所有“真”数据的预测都是1,对所有生成器生成的“伪”数据的预测都是0。生成器希望判别器对两者的预测都是1 。

self.d_loss_real = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits,
                                            tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.ones_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake

下面我们遍历数据。每一次迭代,我们采样一个小批数据,然后使用优化器来更新网络。有趣的是,如果G只更新一次,鉴别器的损失不会变成0。另外,我认为最后调用
d_loss_fake 和 d_loss_real 进行了一些不必要的计算, 因为这些值在 d_optim 和 g_optim 中已经计算过了。
作为Tensorflow 的一个联系,你可以试着优化这一部分,并发送PR到原始的repo。



    for epoch in xrange(config.epoch):
        ...
        for idx in xrange(0, batch_idxs):
            batch_images = ...
    
            batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \
                        .astype(np.float32)
    
            # Update D network
            _, summary_str = self.sess.run([d_optim, self.d_sum],
                feed_dict={ self.images: batch_images, self.z: batch_z })


            # Update G network
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })


            # Run g_optim twice to make sure that d_loss does not go to zero (different from paper)
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })


            errD_fake = self.d_loss_fake.eval({self.z: batch_z})
            errD_real = self.d_loss_real.eval({self.images: batch_images})
            errG = self.g_loss.eval({self.z: batch_z})


最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/550582.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

复习回顾ES6基础篇(一小时学会es6)

基本语法 多行注释 /* 这里的所有内容 都是注释。 */单行注释 // 这是一条注释。变量定义 var x "" //定义范围变量 let y "" //定义局部变量 const z "" //定义常量运算符 变量类型 流程语句 if (condition) {/* 条件为真时运行的代…

LVM与磁盘配额

目录 一.LVM概述 1.LVM (Logical Vokume Manager )逻辑卷管理 2.LVM的管理命令 3.创建并使用LVM操作步骤 二.磁盘配额概述 1.实现磁盘限额的条件 2.Linux磁盘限额的特点 3.实现磁盘配额的步骤 三.总结: 一.LVM概述 1.LVM &#xff…

【静态分析】软件分析课程实验-前置准备

课程:南京大学的《软件分析》课程 平台:Tai-e(太阿)实验作业平台 1. 实验概述 Tai-e 是一个分析 Java 程序的静态程序分析框架,相比于已有的知名静态程序分析框架(如 Soot、Wala 等)&#xf…

《手把手教你》系列基础篇(九十二)-java+ selenium自动化测试-框架设计基础-POM设计模式简介(详解教程)

1.简介 页面对象模型(Page Object Model)在Selenium Webdriver自动化测试中使用非常流行和受欢迎,作为自动化测试工程师应该至少听说过POM这个概念。本篇介绍POM的简介,接下来宏哥一步一步告诉你如何在你JavaSelenium3自动化测试…

算法打卡day36

今日任务: 1)01背包问题理论基础(卡码网:46. 携带研究材料) 2)01背包问题滚动数组(卡码网:46. 携带研究材料) 3)416. 分割等和子集 4)复习day11 卡码网:46. 携带研究材料 题目链接&…

35、链表-LRU缓存

思路: 首先要了解LRU缓存的原理,首先定下容量,每次get请求和put请求都会把当前元素放最前/后面,如果超过容量那么头部/尾部元素就被移除,所以最近最少使用的元素会被优先移除,保证热点数据持续存在。 不管放…

排序(三)——快速排序(递归以及栈和队列实现非递归)超详细

目录 1.hoare法 2.挖坑法 3.前后指针法 4.快排的非递归 4.1 栈实现快排非递归 4.2 队列实现快排非递归 快排我们之前在学习通讯录的时候就用了,那时候我们知道快排是一个很牛逼的排序算法,那他到底是怎么实现的呢? 1.hoare法 快速排序…

【Redis 神秘大陆】003 数据类型使用场景

三、Redis 数据类型和使用场景 Hash:对象类型的数据,购物车List:队列/栈Set:String类型的无序集合,intset,抽奖、签到、打卡,商品评价标签Sorted Set:存储有序的元素,zip…

六、OpenFeign服务接口调用

一、提问 已经有loadbalancer为什么还要学习OpenFeign? 两个都有道理的话,日常用那个? 二、是什么 OpenFeign是什么 官网翻译 Feign是一个声明性web服务客户端。它使编写web服务客户端变得更容易。使用Feign创建一个接口并对其进行注释。它具有可…

【InternLM 实战营第二期笔记】LMDeploy 量化部署 LLMVLM实战

Huggingface与TurboMind介绍 Huggingface HuggingFace是一个高速发展的社区,包括Meta、Google、Microsoft、Amazon在内的超过5000家组织机构在为HuggingFace开源社区贡献代码、数据集和模型。可以认为是一个针对深度学习模型和数据集的在线托管社区,如…

python 列表对象函数

对象函数必须通过一个对象调用。 列表名.函数名() append() 将某一个元素对象添加在列表的表尾 如果添加的是其他的序列,该序列也会被看成是一个数据对象 count() 统计列表当中 某一个元素出现的次数 extend() 在当前列表中 将传入的其他序列的元素添加在表尾…

【AIGC】AIGC在虚拟数字人中的应用:塑造未来互动体验的革新力量

🚀 🚀 🚀随着科技的快速发展,AIGC已经成为引领未来的重要力量。其中,AIGC在虚拟数字人领域的应用更是引起了广泛关注。虚拟数字人作为一种先进的数字化表达形式,结合了3D建模、动画技术、人工智能等多种先进…

Kubernetes对象的定义和操作

📕作者简介: 过去日记,致力于Java、GoLang,Rust等多种编程语言,热爱技术,喜欢游戏的博主。 📘相关专栏Rust初阶教程、go语言基础系列、spring教程等,大家有兴趣的可以看一看 📙Jav…

数据密集型应用系统设计 PDF 电子书(Martin Kleppmann 著)

简介 《数据密集型应用系统设计》全书分为三大部分: 第一部分,主要讨论有关增强数据密集型应用系统所需的若干基本原则。首先开篇第 1 章即瞄准目标:可靠性、可扩展性与可维护性,如何认识这些问题以及如何达成目标。第 2 章我们比…

PHP反序列化命令执行+PHP反序列化POP大链 +PHP反序列化基础

[题目信息]: 题目名称题目难度PHP反序列化命令执行1 [题目考点]: 反序列化命令执行,获取题目flag。[Flag格式]: SangFor{t5euvZ_OB8Jd_h2-}[环境部署]: docker-compose.yml文件或者docker tar原始文件。 docker-compose up …

内外网文件摆渡系统,如何贯通网络两侧被隔断的工作流?

随着业务范围不断扩大,产生的数据体量越来越多,企业会采取网络隔离,对核心数据进行保护。网络隔离主要目的是保护企业内部的敏感数据和系统不受外部网络攻击的风险,可以通过物理或逻辑方式实现,例如使用防火墙、网闸、…

电商技术揭秘二十六:智能库存预警与补货系统(下)

相关系列文章 电商技术揭秘一:电商架构设计与核心技术 电商技术揭秘二:电商平台推荐系统的实现与优化 电商技术揭秘三:电商平台的支付与结算系统 电商技术揭秘四:电商平台的物流管理系统 电商技术揭秘五:电商平台…

我的思考工作流(2024年版)

去年底,我对自己的思考工作流程又做了一些优化和改进,把它变得更为简洁、清晰。 因此,今天我想把它分享给大家,希望能给你一些启发。 我的核心方法论依然是我自己提出的「INKP知识管理法」(参见《打开心智》第五章&…

【刷题笔记】第七天

文章目录 [924. 尽量减少恶意软件的传播](https://leetcode.cn/problems/minimize-malware-spread/)方法一,并查集方法二,dfs [GCD and LCM ](https://vjudge.net.cn/problem/HDU-4497#authorKING_LRL) 924. 尽量减少恶意软件的传播 如果移除一个感染节…

电机控制器电路板布局布线参考指导(五)

电机控制器电路板布局布线参考指导(五)大容量电容和旁路电容的放置 1.大容量电容的放置2.电荷泵电容器3.旁路电容/去耦电容的放置3.1 靠近电源3.2 靠近功率器件3.3 靠近开关电流源3.4 靠近电流感测放大器3.5 靠近稳压器 tips:资料主要来自网络…