通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 粒子群优化算法 (PSO)

4.2 反向学习粒子群优化算法 (OPSO)

4.3 多策略改进反向学习粒子群优化算法 (MSO-PSO)

5.完整程序


1.程序功能描述

分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法.对比其优化收敛曲线。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

...........................................................................
for t=1:tmax
    t
    time(t) = t;
    w       = 0.5;
    for i=1:Pop
        if t > 1
            %N
            x(1,i)         = x_(1,i);
            x_best(1,i)    = x_best_(1,i);
            %I
            y(1,i)         = y_(1,i);
            y_best(1,i)    = y_best_(1,i);
        end
        %N
        %速度1设置
        va(1,i) = w*va(1,i) + c1*rand(1)*(x_best(1,i)-x(1,i)) + c2*rand(1)*(Tx_best-x(1,i));
        %更新
        x(1,i)  = x(1,i) + va(1,i);
        %变量1的限制
        if x(1,i) >= max1
           x(1,i) = max1;
        end
        if x(1,i) <= min1
           x(1,i) = min1;
        end                             

        %I
        %速度2设置
        vb(1,i) = w*vb(1,i) + c1*rand(1)*(y_best(1,i)-y(1,i)) + c2*rand(1)*(Ty_best-y(1,i));
        %更新
        y(1,i)  = y(1,i) + vb(1,i);
        %变量2的限制
        if y(1,i) >= max2
           y(1,i) = max2;
        end
        if y(1,i) <= min2
           y(1,i) = min2;
        end                            

       [BsJ,x(1,i),y(1,i)] = func_fitness(x(1,i),y(1,i));  
        
        if BsJ<BsJi(i)
           BsJi(i)        = BsJ;
           x_best(1,i)    = x(1,i);
           y_best(1,i)    = y(1,i);
        end
        if BsJi(i)<minJi
           minJi      = BsJi(i);
           Tx_best    = x(1,i);
           Ty_best    = y(1,i);
        end
        %反向
        %反向学习
        %N
        x_(1,i)         = (max1+min1)-x(1,i);
        x_best_(1,i)    = (max1+min1)-x_best(1,i);
        %I
        y_(1,i)         = (max2+min2)-y(1,i);
        y_best_(1,i)    = (max2+min2)-y_best(1,i);
 
       [BsJ,x(1,i),y(1,i)] = func_fitness(x_(1,i),y_(1,i));
 
        if BsJ<BsJi(i)
           BsJi(i)        = BsJ;
           x_best(1,i)    = x_(1,i);
           y_best(1,i)    = y_(1,i);
        end
        if BsJi(i)<minJi
           minJi      = BsJi(i);
           Tx_best    = x_(1,i);
           Ty_best    = y_(1,i);
        end
    end
    Jibest(t) = minJi;
end
Tx_best
Ty_best
figure;
plot(Jibest,'b','linewidth',1);
xlabel('迭代次数');
ylabel('J');
grid on
 
save R2.mat Jibest

06_042m

4.本算法原理

4.1 粒子群优化算法 (PSO)

        粒子群优化算法模拟鸟群或鱼群的社会行为,通过迭代搜索最优解。在n维搜索空间中,每一个粒子代表一个潜在解,并具有速度和位置属性。在每次迭代过程中,粒子根据自身的历史最优位置(个体极值pi​)和全局最优位置(全局极值g)更新自己的速度和位置。

4.2 反向学习粒子群优化算法 (OPSO)

       反向学习PSO是在传统PSO基础上引入了反向学习机制,当搜索过程陷入局部最优时,通过回溯过去的最优解来调整粒子的速度和方向,从而增加跳出局部最优的可能性。

       改进要点: RL-PSO会在适当的时候启用反向学习阶段,此时速度更新会参考历史最优位置而非当前最优位置,具体数学表达式因不同实现方式而异,但一般包含对过去优良解的记忆和利用。

4.3 多策略改进反向学习粒子群优化算法 (MSO-PSO)

      MSO-PSO融合了多种策略并结合反向学习的思想,进一步增强算法的全局搜索能力和收敛速度。例如,可能结合自适应权重调整、动态邻域搜索、精英保留策略等。

5.完整程序

VVV

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/550370.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

百货商场用户画像描绘与价值分析

目录 内容概述数据说明实现目标技术点主要内容导入模块1.项目背景1.1 项目背景与挖掘目标 2.数据探索与预处理2.1 结合业务对数据进行探索并进行预处理2.2 将会员信息表和销售流水表关联与合并 3 统计分析3.1 分析会员的年龄构成、男女比例等基本信息3.2 分析会员的总订单占比&…

Python 入门指南(四)

原文&#xff1a;zh.annas-archive.org/md5/97bc15629f1b51a0671040c56db61b92 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第十章&#xff1a;哈希和符号表 我们之前看过列表&#xff0c;其中项目按顺序存储并通过索引号访问。索引号对计算机来说很有效。它们是整…

使用 Docker 部署 SurveyKing 调查问卷系统

1&#xff09;SurveyKing 介绍 SurveyKing 是一款功能强大、操作简便的开源问卷系统。它不仅满足了用户对问卷调查的基本需求&#xff0c;还提供了丰富的逻辑设置和灵活的问题设置&#xff0c;使得问卷制作更加智能化和个性化。此外&#xff0c;SurveyKing 还具有快速部署和安全…

笔记本电脑上的聊天机器人: 在英特尔 Meteor Lake 上运行 Phi-2

对应于其强大的能力&#xff0c;大语言模型 (LLM) 需要强大的算力支撑&#xff0c;而个人计算机上很难满足这一需求。因此&#xff0c;我们别无选择&#xff0c;只能将它们部署至由本地或云端托管的性能强大的定制 AI 服务器上。 为何需要将 LLM 推理本地化 如果我们可以在典配…

elmentui树形表格使用Sortable拖拽展开行时拖拽bug

1、使用elemntui的el-table使用Sortable进行拖拽&#xff0c;如下 const el this.$el.querySelector(.el-table__body-wrapper tbody) Sortable.create(el, {onEnd: (event) > {const { oldIndex, newIndex } event//拿到更新前后的下标即可完成数据的更新} })2、但是我这…

docker 环境变量设置实现方式

1、前言 docker在当前运用的越来广泛&#xff0c;很多应用或者很多中间软件都有很多docker镜像资源&#xff0c;运行docker run 启动镜像资源即可应用。但是很多应用或者中间件有很多配置参数。这些参数在运用过程怎么设置给docker 容器呢&#xff1f;下面介绍几种方式 2 、do…

Day91:API攻防-接口安全SOAPOpenAPIRESTful分类特征导入项目联动检测

目录 API分类特征-SOAP&OpenAPI&RESTful API分类特征 API常见漏洞 API检测流程 API检测项目-Postman&APIKit&XRAY 工具自动化-SOAP - WSDL Postman 联动burpxray APIKit插件(可联动xray) 工具自动化-OpenApi - Swagger Postman 联动burpxray APIKit…

HarmonyOS开发实例:【分布式邮件】

概述 基于TS扩展的声明式开发范式编程语言编写的一个分布式邮件系统&#xff0c;可以由一台设备拉起另一台设备&#xff0c;每次改动邮件内容&#xff0c;都会同步更新两台设备的信息。效果图如下&#xff1a; 搭建OpenHarmony开发环境 完成本篇Codelab我们首先要完成开发环境…

OpenStack:开源云计算的崛起与发展

目录 一&#xff0c;引言 二&#xff0c;OpenStack的起源 三&#xff0c;OpenStack的版本演进 四&#xff0c;OpenStack跟虚拟化的区别 五&#xff0c;OpenStack组件介绍 1&#xff09;Horizon介绍 2&#xff09;KeyStone介绍 Keystone 功能概览 Keystone 架构详解 3&a…

RabbitMQ 各种通信模式的Python实现

一、RabbitMQ 原理 1、基本原理 RabbitMQ是流行的开源消息队列系统&#xff0c;用erlang语言开发。RabbitMQ是AMQP&#xff08;高级消息队列协议&#xff09;的标准实现。支持多种客户端&#xff0c;如&#xff1a;Python、Java、Javascript、C#、C/C,Go等&#xff0c;支持AJ…

RabbitMQ Stream插件使用详解

2.4版为RabbitMQ流插件引入了对RabbitMQStream插件Java客户端的初始支持。 RabbitStreamTemplateStreamListener容器 将spring rabbit流依赖项添加到项目中&#xff1a; <dependency><groupId>org.springframework.amqp</groupId><artifactId>sprin…

【echarts】使用 ECharts 绘制3D饼图

使用 ECharts 绘制3D饼图 在数据可视化中&#xff0c;饼图是表达数据占比信息的常见方式。ECharts 作为一个强大的数据可视化库&#xff0c;除了标准的二维饼图&#xff0c;也支持更加生动的三维饼图绘制。本文将指导你如何使用 ECharts 来创建一个3D饼图&#xff0c;提升你的…

百度智能云万源全新一代智能计算操作系统发布:引领AI新纪元,开启智能未来

随着科技的迅猛发展&#xff0c;人工智能&#xff08;AI&#xff09;逐渐渗透到我们生活的每个角落&#xff0c;为人类社会带来前所未有的变革。在这场科技革命的浪潮中&#xff0c;百度作为中国AI领域的领军企业&#xff0c;始终站在技术创新的前沿&#xff0c;不断引领行业发…

【数据结构与算法】用两个栈实现一个队列

题目 用两个栈&#xff0c;实现一个队列功能 add delete length 队列 用数组可以实现队列&#xff0c;数组和队列的区别是&#xff1a;队列是逻辑结构是一个抽象模型&#xff0c;简单地可以用数组、链表实现&#xff0c;所以数组和链表是一个物理结构&#xff0c;队列是一个逻…

Rust腐蚀服务器修改背景和logo图片操作方法

Rust腐蚀服务器修改背景和logo图片操作方法 大家好我是艾西一个做服务器租用的网络架构师。在我们自己搭建的rust服务器游戏设定以及玩法都是完全按照自己的想法设定的&#xff0c;如果你是一个社区服那么对于进游戏的主页以及Logo肯定会有自己的想法。这个东西可以理解为做一…

MaxCompute 近实时增全量处理一体化新架构和使用场景介绍

随着当前数据处理业务场景日趋复杂&#xff0c;对于大数据处理平台基础架构的能力要求也越来越高&#xff0c;既要求数据湖的大存储能力&#xff0c;也要求具备海量数据高效批处理能力&#xff0c;同时还可能对延时敏感的近实时链路有强需求&#xff0c;本文主要介基于 MaxComp…

Docker安装xxl-job分布式任务调度平台

文章目录 Docker安装xxl-job分布式任务调度平台1.xxl-job介绍2. 初始化“调度数据库”3、docker挂载运行xxl-job容器3.1、在linux的opt目录下创建xxl_job文件夹&#xff0c;并在里面创建logs文件夹和application.properties文件3.2、配置application.properties文件&#xff0c…

基于Qt的二维码生成与识别

基于Qt的二维码生成与识别 一、获取QZxing开源库 1.通过封装的QZxing开源库生成和识别二维码&#xff0c;下载地址&#xff1a;GitCode - 开发者的代码家园https://gitcode.com/mirrors/ftylitak/qzxing/tree/master。 2.下载解压后&#xff0c;使用Qt Creator xx&#xff0…

Yolo-world+Python-OpenCV之摄像头视频实时目标检测

上一次介绍了如何使用最基本的 Yolo-word来做检测&#xff0c;现在我们在加opencv来做个实时检测的例子 基本思路 1、读取离线视频流 2、将视频帧给yolo识别 3、根据识别结果 对视频进行绘制边框、加文字之类的 完整代码如下&#xff1a; import datetimefrom ultralytics …

使用undetected-chromedriver遇到的问题及解决方法,以及它使用SOCKS代理的问题

环境&#xff1a;python3.8.10 uc的安装方法&#xff1a; pip38 install undetected-chromedriver 上测试代码&#xff1a; import undetected_chromedriver as uc driver uc.Chrome() driver.get(https://www.baidu.com) driver.save_screenshot(baidu.png)报错&#xff…