SCI一区 | Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测

SCI一区 | Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

多变量时间序列预测是一项重要的任务,它涉及对具有多个变量的时间序列数据进行预测。为了改进这一任务的预测性能,研究者们提出了许多不同的模型和算法。其中一种结合了时间卷积网络(Temporal Convolutional Network,TCN)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)和注意力机制(Attention)的模型。

该算法的核心思想是利用时间卷积网络来捕捉时间序列数据中的长期依赖关系,通过双向门控循环单元来建模序列数据的上下文信息,并通过注意力机制来自适应地加权不同变量的重要性。

步骤如下:

时间卷积网络(TCN):使用一维卷积层来提取时间序列数据中的局部和全局特征。时间卷积能够通过不同大小的卷积核捕捉不同长度的时间依赖关系,从而更好地建模序列中的长期依赖。

双向门控循环单元(BiGRU):将TCN的输出作为输入,使用双向门控循环单元来编码序列数据的上下文信息。双向GRU能够同时考虑序列数据的过去和未来信息,提高了对序列中重要特征的捕捉能力。

注意力机制(Attention):通过引入注意力机制,模型可以自适应地关注输入序列中不同变量的重要性。注意力机制可以根据序列数据的不同特征,动态地调整它们在预测任务中的权重,从而提高模型的表达能力和预测准确性。

输出层:最后,根据模型的具体任务需求,可以使用不同的输出层结构,如全连接层来进行最终的预测。

通过将时间卷积网络、双向门控循环单元和注意力机制相结合,POA-TCN-BiGRU-Attention鹈鹕算法能够更好地建模多变量时间序列数据的复杂关系,并提高预测性能。然而,需要注意的是,该算法的具体实现可能会根据具体问题和数据集的特点进行适当的调整和优化。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测

%% 

%% 算法优化TCN-BiGRU-Attention,实现多变量输入单步预测
clc;
clear 
close all



%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);

outputName = layer.Name;

for i = 1:numBlocks
    dilationFactor = 2^(i-1);
    
    layers = [
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)
        layerNormalizationLayer
        dropoutLayer(dropoutFactor) 
        % spatialDropoutLayer(dropoutFactor)
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")
        layerNormalizationLayer
        reluLayer
        dropoutLayer(dropoutFactor) 
        additionLayer(2,Name="add_"+i)];

    % Add and connect layers.
    lgraph = addLayers(lgraph,layers);
    lgraph = connectLayers(lgraph,outputName,"conv1_"+i);

    % Skip connection.
    if i == 1
        % Include convolution in first skip connection.
        layer = convolution1dLayer(1,numFilters,Name="convSkip");

        lgraph = addLayers(lgraph,layer);
        lgraph = connectLayers(lgraph,outputName,"convSkip");
        lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");
    else
        lgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");
    end
    
    % Update layer output name.
    outputName = "add_" + i;
end


function [z] = levy(n,m,beta)

    num = gamma(1+beta)*sin(pi*beta/2); % used for Numerator 
    
    den = gamma((1+beta)/2)*beta*2^((beta-1)/2); % used for Denominator

    sigma_u = (num/den)^(1/beta);% Standard deviation

    u = random('Normal',0,sigma_u,n,m); 
    
    v = random('Normal',0,1,n,m);

    z =u./(abs(v).^(1/beta));

  
  end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/550225.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Proxyman Premium for Mac v5.1.1激活版:卓越的网络调试与分析工具

Proxyman Premium for Mac是一款功能强大的网络调试与分析工具,专为开发人员和测试人员精心打造。它集多种功能于一身,为用户提供了全面、高效的网络开发体验。 Proxyman Premium for Mac v5.1.1激活版下载 作为一款跨平台代理工具,Proxyman …

# RAG | Langchain # Langchain RAG:打造Markdown文件的结构化分割解决方案

【文章简介】 在信息技术的现代背景下,高效地处理和分析文本数据对于知识获取和决策支持至关重要。Markdown文件因其易读性和高效性,在文档编写和知识共享中占据了重要地位。然而,传统的文本处理方法往往忽视了Markdown的结构化特性&#xff…

WIN7用上最新版Chrome

1.下载WIN10最新版Chrome的离线安装包 谷歌浏览器 Chrome 最新版离线安装包下载地址 v123.0.6312.123 - 每日自动更新 | 异次元软件 文件名称:123.0.6312.123_chrome_installer.exe。 123.0.6312.123_chrome_installer.exe 文件右键解压缩得到 chrome.7z&#x…

Elasticsearch:下载、启动和账号密码登录

因为我的电脑是 window,以下都是以 window 环境举例。 一、下载 Elasticsearch 是使用 java 开发的,且 7.8 版本的 ES 需要 JDK 版本 1.8 以上,安装前注意java环境的准备。 官网地址:https://www.elastic.co/cn/ 下载地址&#xf…

第十五届蓝桥杯题解-好数

题目大意&#xff1a;一个数的低位为奇数&#xff0c;次低位为偶数&#xff0c;以此类推的数成为好数&#xff0c;例如&#xff1a;1&#xff0c;3&#xff0c;5&#xff0c;7&#xff0c;9 给定一个n&#xff0c;求1-n所有好数的个数&#xff0c;n<1e7 思路&#xff1a;一…

Python 数学应用(四)

原文&#xff1a;zh.annas-archive.org/md5/123a7612a4e578f6816d36f968cfec22 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第十一章&#xff1a;其他主题 在本章中&#xff0c;我们将讨论一些在本书前几章中没有涉及的主题。这些主题大多涉及不同的计算方式以及优…

Python也可以合并和拆分PDF,批量高效!

PDF是最方便的文档格式&#xff0c;可以在任何设备原样且无损的打开&#xff0c;但因为PDF不可编辑&#xff0c;所以很难去拆分合并。 知乎上也有人问&#xff0c;如何对PDF进行合并和拆分&#xff1f; 看很多回答推荐了各种PDF编辑器或者网站&#xff0c;确实方法比较多。 …

C++学习————第六天 (运算符重载 const成员 取地址)

这一篇我们来补齐上一天的 留下的三个默认成员函数 //上一天内容 &#xff1a; nullhttps://blog.csdn.net/island1314/article/details/137371086?spm1001.2014.3001.5502 1、重载 1.1 运算符重载 C为了增强代码的可读性引入了运算符重载&#xff0c;运算符重载是具有特殊…

AUTOCAD输出或打印PDF文件时,如何将图形居中且布满图纸?

AUTOCAD输出或打印PDF文件时,如何将图形居中且布满图纸? 如下图所示,我们打开一份DWG格式的图纸文件,然后点击上方的“打印“图标, 如下图所示, 打印机/绘图仪这里选择“DWG To PDF“; 图纸尺寸:这里以普通的A4纸为例进行说明; 打印比例选择“布满图纸“; 打印偏移…

uniapp 组件传值

uniapp 组件传值 父传子子传父 uniapp 组件传值 父传子 在uniapp中&#xff0c;组件传值主要通过props进行。以下是一个简单的例子&#xff1a; 首先&#xff0c;创建一个组件MyComponent.vue&#xff1a; <template><view><text>{{ message }}</tex…

计算机网络(六)应用层

应用层 基本概念 服务器端&#xff08;Server&#xff09;&#xff1a; 服务器是网络中提供服务的计算机或软件程序。服务器通常具有更高的性能、更大的存储空间和更高的带宽&#xff0c;用于提供各种服务&#xff0c;如文件存储、数据库管理、Web托管、电子邮件传递等。服务…

Redis 缓存预热、预热数据选取策略、缓存保温、性能边界

缓存预热 热点数据预热&#xff1a;根据业务分析或统计数据&#xff0c;确定热点数据&#xff08;经常被访问的数据&#xff09;&#xff0c;并将其提前加载到Redis缓存中。可以根据访问频率、访问量或其他业务指标来确定热点数据。定时预热&#xff1a;可以设置定时任务&…

住宅IP代理和机房IP代理之间的区别?

一、什么是数据中心/机房IP代理&#xff1f; 数据中心/机房IP代理是使用数据中心拥有并进行分配和管理的IP的代理&#xff0c;俗称机房IP代理。 二、数据中心/机房IP代理的特点 与住宅代理通过使用ISP拥有和分配的IP地址的设备路由请求的情况不同&#xff0c;数据中心代理利…

什么是线程?线程和进程谁更弔?

第一个参数是所创建进程的pid。 第二个是线程的属性。 第三个参数是返回值为void*&#xff0c;参数也为void*的函数指针。 第四个参数是给第三个参数的参数&#xff0c;也就是给给函数传参。 #include<iostream> #include<pthread.h> #include<unistd.h>…

8thWall vs. AR.js

对于熟悉 JavaScript、WebGL 和 HTML5 等 Web 技术的数字创作者来说&#xff0c;8th Wall 提供了功能丰富且强大的 AR 开发平台&#xff0c;尽管价格较高。 然而&#xff0c;新手开发人员和专注于基于标记的 AR 的开发人员可能会发现 AR.js 更易于使用且更经济实惠。 1、8th Wa…

利用redis和fastapi实现本地与平台策略进行交互

redis在pandas一文有详细使用方法(一文教会pandas-CSDN博客)&#xff0c;具体可视化软件有redisstudio等。它是一个由 Salvatore Sanfilippo 写的 key-value 存储系统&#xff0c;是跨平台的非关系型数据库。 Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络…

看图找LOGO,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建生活场景下的商品商标LOGO检测识别系统

日常生活中&#xff0c;我们会看到眼花缭乱的各种各样的产品logo&#xff0c;但是往往却未必能认全&#xff0c;正因为有这个想法&#xff0c;这里我花费了过去近两周的时间采集和构建了包含50种商品商标logo的数据集&#xff0c;基于YOLOv8全系列的参数模型开发构建了对应的检…

02_JavaWeb中的Tomcat(详解)

文章目录 Tomcat1, 概述1.1 安装1.2 目录结构1.3 启动/停止 2, 资源部署2.1 直接部署: 主要和重要的方式2.2 虚拟映射: 重要2.2.1 方式一:2.2.1 方式二: 2.3 原理解析 3, Tomcat组件3.1 Connector3.2 Engine3.2.1 Host3.2.1.1 Context 4, 其它: 重要4.1 设置 Tomcat 1, 概述 w…

OSPF - 链路状态路由协议

IGP 外部网关路由协议&#xff1a; OSPF &#xff0c; IS-IS EGP 内部网关路由协议&#xff1a; BGP 协议算法&#xff1a; 距离矢量路由协议 链路状态路由协议 lsdb:链路状态数据库 - 存放lsa的地址 RIP&#xff1a;有方向的矢量&#xff0c;距离矢量路由协议&#xf…

通过Maven导入本地jar包

1.创建lib文件夹&#xff0c;把jar包放到文件夹里面 2.在pom里导入依赖 导入完成