💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
视觉跟踪是计算机视觉中的重要任务之一,它涉及在视频序列中准确地跟踪目标物体。在线特征选择是一种针对视觉跟踪的方法,通过动态地选择和更新跟踪目标的特征,以提高跟踪性能和鲁棒性。以下是一些可能的研究方向和方法:
1. 特征选择算法:通过研究和开发不同的特征选择算法,如滤波器方法、Wrapper方法、嵌入式方法等,以在线方式选择最具代表性和区分能力的特征。这些算法可以考虑特征的稳定性、相关性、重要性等因素,并基于跟踪目标的特点来适应性地选择特征。
2. 在线学习方法:将在线特征选择方法与增量学习技术相结合,实现对新样本的适应性学习和特征选择。在线学习方法可以通过使用已有样本进行模型更新,同时选择和更新特征,以适应目标外观的变化和场景的变化。
3. 深度学习特征选择:利用深度学习技术,在线选择和学习适合于视觉跟踪的特征表示。可以通过深度神经网络进行特征提取和选择,或者将深度学习与传统的在线特征选择方法相结合,提高特征的表达和分类能力。
4. 鲁棒性分析:对于在线特征选择方法,研究其在不同跟踪场景下的鲁棒性。例如,不同目标的尺度变化、姿态变化、遮挡等情况下,评估方法的性能和鲁棒性。可以通过真实数据集和评价指标来验证算法的表现,并与其他跟踪方法进行比较。
5. 实时性能优化:针对在线特征选择方法的实时性要求,优化算法的计算效率和速度。可以使用并行计算、硬件加速等技术,提高特征选择方法的实时性能。
通过以上的研究,可以提高视觉跟踪算法的效果和性能,并适应不同的跟踪场景和目标对象。这些研究成果可以为实际的视觉跟踪应用提供有力支持,例如智能监控、自动驾驶等。
本文使用特征选择机制对跟踪系统使用的特征进行排名,保持高帧速率。特别是,安装在自适应颜色跟踪 (ACT) 系统上的特征选择以超过 110 FPS 的速度运行。这项工作证明了功能选择在在线和实时应用程序中的重要性,显然是一个非常令人印象深刻的性能,我们的解决方案在基线ACT的基础上提高了3%,最高可达7%,同时与29种最先进的跟踪方法相比提供了卓越的结果。
📚2 运行结果
部分代码:
% Our model Parameters
params.padding = 1.0; % extra area surrounding the target
params.output_sigma_factor = 1/16; % spatial bandwidth (proportional to target)
params.sigma = 0.2; % gaussian kernel bandwidth
params.lambda = 1e-2; % regularization (denoted "lambda" in the paper)
params.learning_rate = 0.075; % learning rate for appearance model update scheme (denoted "gamma" in the paper)
params.compression_learning_rate = 0.25; % learning rate for the adaptive dimensionality reduction (denoted "mu" in the paper)
params.non_compressed_features = {'gray'}; % features that are not compressed, a cell with strings (possible choices: 'gray', 'cn')
params.compressed_features = {'cn'}; % features that are compressed, a cell with strings (possible choices: 'gray', 'cn')
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1] Roffo, G., Melzi, S., Castellani, U. and Vinciarelli, A., 2017. Infinite Latent Feature Selection: A Probabilistic Latent Graph-Based Ranking Approach. arXiv preprint arXiv:1707.07538.
[2] Roffo, G., Melzi, S. and Cristani, M., 2015. Infinite feature selection. In Proceedings of the IEEE International Conference on Computer Vision (pp. 4202-4210).