hot100 -- 链表(中)

不要觉得力扣核心代码模式麻烦,它确实比不上ACM模式舒服,可以自己处理输入输出

只是你对 链表 和 return 的理解不到位

👂 ▶ 屿前世 (163.com)

👂 ▶ see you tomorrow (163.com)

目录

🎂两数相加

🚩删除链表倒数第 N 个节点

AC  双指针

AC  栈

AC  计算链表长度

🌼两两交换链表中的节点

AC  递归

AC  迭代

🌼K 个一组翻转链表


🎂两数相加

2. 两数相加 - 力扣(LeetCode)

1)l1, l2 长度可能不一样,假设短的后面全是 0,通过三目运算符得到 当前节点的值,比如

n1 = l1 ? l1->val : 0

2)sum = n1 + n2 + 进位,%10 当前位,/10 进位

3)注意给节点赋值方式

tail->next = new ListNode(...);

4)可能漏最后一次进位,while() 结束后还要来一次

时间 O(max(m, n)),空间 O(1)

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
        ListNode *head = nullptr, *tail = nullptr;

        int temp = 0; // 进位
        while (l1 || l2) {
            int n1 = l1 ? l1->val : 0; // l1 的值
            int n2 = l2 ? l2->val : 0;
            int sum = n1 + n2 + temp;

            if (!head) // 第1次
                head = tail = new ListNode(sum % 10); // 注意赋值方式
            else {
                // tail 上一步已经初始化, 所以现在是 tail->next
                tail->next = new ListNode(sum % 10); // 先给下一赋值
                tail = tail->next; // 再移动
            }

            temp = sum / 10; // 进位
            
            // l1, l2 向后移动
            if (l1) l1 = l1->next;
            if (l2) l2 = l2->next;
        }
        // 最后一次进位
        if (temp) 
            tail->next = new ListNode(temp);

        return head; // 不返回 tail, 防止 nullptr
    }
};

🚩删除链表倒数第 N 个节点

19. 删除链表的倒数第 N 个结点 - 力扣(LeetCode)

注意:链表的题,如果出现 Node->next,那么这个 Node 一定不为 nullptr,否则会报错

1,双指针:一前一后,前面的先移动 n 个位置,然后开始同步移动

2,栈:思路类似双指针,最终都是遍历到待删除节点前一个(从栈顶开始出栈)

3,链表长度:思路类似前面,借助哑节点,避免对删除头节点的处理,遍历两次即可

AC  双指针

时间 O(L),空间 O(1),L 链表长度

自己写的

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        ListNode *fast = head, *slow = head;
        // 前后指针 -- 找到倒数第 n 个节点, 即 slow
        while (n--)
            fast = fast->next;

        // 删除头节点
        if (!fast) {
            ListNode *temp = head;
            head = temp->next;
            delete temp;
            return head;
        }

        while (fast->next)
            slow = slow->next, fast = fast->next;

        // 删除 slow 下一节点
        ListNode *bad = slow->next; // 要删除的节点
        slow->next = slow->next->next;

        bad->next = nullptr;
        delete bad;

        // 上面处理了头节点被删除的情况,所以这里可以 return head
        return head; 
    }
};

官解重写

删除倒数第 n 个节点,通过指针的 next 来操作,最后的 delete 只是为了手动释放堆区数据(自己new的自己delete)

bad 的作用是,防止删的是第一个元素,因为最终会遍历到删除节点的前一个

如果不用 bad,就像前面的代码一样,特殊处理删除节点是头节点的情况

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        // 初始化 head 上一位置,  bad->next = head
        ListNode *bad = new ListNode(0, head); 
        ListNode *fast = head, *slow = bad; // slow 初始化为 bad

        while (n--)
            fast = fast->next;

        while (fast) {
            fast = fast->next;
            slow = slow->next;
        }
        // 此时 slow 位于删除节点 上一位置
        slow->next = slow->next->next; // 更新连接
        ListNode *ans = bad->next; // 新的头节点
        delete bad;
        
        return ans; // 返回新的头节点
    }
};

AC  栈

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        stack<ListNode *> s;
        // temp 的作用是,防止删的是第一个元素,因为最终会遍历到删除节点的前一个
        ListNode *temp = new ListNode(0, head);
        ListNode *cur = temp;
        // 链表节点全部入栈
        while (cur) {
            s.push(cur); // push_back 是 vector
            cur = cur->next;
        }
        // 弹出 n 个元素后,栈顶就是待删除节点前一个
        while (n--) 
            s.pop();
        
        ListNode *prev = s.top(); 
        prev->next = prev->next->next; // 先重新连接

        ListNode *ans = temp->next; // 再赋值新的头节点

        delete temp;

        return ans;
    }
};

AC  计算链表长度

同样,类似上面两种,通过头节点前的,哑节点,避免对删除头节点这种情况的处理

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        ListNode *temp = new ListNode(0, head); // 哑节点,避免对头节点删除的处理
        ListNode *cur = temp;
        int len = 0;
        // 链表长度
        while (cur->next) { // 长度容易错
            len++;
            cur = cur->next;
        }
        cur = temp;
        int count = len - n;
        // 哑节点移动 len - n + 1,即待删除节点
        // 所以,移动 len - n,刚好待删除前一个
        while (count--) 
            cur = cur->next;
        cur->next = cur->next->next;
        ListNode *ans = temp->next; // 新的头节点
        delete temp;

        return ans;
    }
};

🌼两两交换链表中的节点

24. 两两交换链表中的节点 - 力扣(LeetCode)

AC  递归

head之前的不用处理,举个例子,比如

转换后 head = swapPairs(temp->next),把两两视作一个整体,那么两两中的后一个,指向哪里,取决于后面递归的结果,所以只需考虑当前层

时间 O(n),空间 O(n)(递归栈深度 n)

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    // head 表示递归时,当前两两交换节点的前一个
    ListNode* swapPairs(ListNode* head) {
        // 递归出口
        if (head == nullptr || head->next == nullptr)
            return head; // 只剩0个 或 1个节点
            
        // 只看当前层:交换两个节点
        ListNode *temp = head->next; 
        head->next = swapPairs(temp->next); // 递归交换剩余节点
        temp->next = head;
        return temp; // 返回新的头节点
    }
};

AC  迭代

类似冒泡排序,直接交换,但是需要借助哑节点 temp,比如

temp->Node1->Node2

👇

temp->Node2->Node1

时间 O(n),空间 O(1)

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* swapPairs(ListNode* head) {
        ListNode *temp = new ListNode(0, head); // 初始 temp->next == head
        ListNode *tempHead = temp; // 头节点前一个
        // 递归中的 head 是当前节点
        // 迭代中的 head 只表示原链表头节点
        // 所以 while 中不能用 head, 应该用 temp
        while (temp->next != nullptr && temp->next->next != nullptr) {
            ListNode *Node1 = temp->next;
            ListNode *Node2 = temp->next->next;
            // temp->Node1->Node2 ----> temp->Node2->Node1
            temp->next = Node2;
            Node1->next = Node2->next;
            Node2->next = Node1;
            // 新的哑节点
            temp = Node1;
        }
        ListNode *ans = tempHead->next; // 新链表头节点
        // delete tempHead; // 删除哑节点
        return ans; // 新的头节点
    }
};

🌼K 个一组翻转链表

25. K 个一组翻转链表 - 力扣(LeetCode)

模拟:迭代反转 + 新建连接

以下是新建连接的 3 个步骤

k = 3 也一样

和上/下一组新建连接时,要从外层开始,就是p0->next->next到p0->next最后才是p0

p0->next->next = cur; // 下一组头
p0->next = nex; // 上一组尾
p0 = p1; // 更新p0

时间 O(n),空间 O(1)

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* reverseKGroup(ListNode* head, int k) {
        // 链表长度 len
        int len = 0;
        for (ListNode *cur = head; cur; cur = cur->next)
            len++;

        // temp->next  ==  head(temp/p0 -- 哑节点/哨兵节点)
        ListNode *temp = new ListNode(0, head);
        ListNode *p0 = temp; // p0 k个一组第一个节点的前一个

        ListNode *nex = nullptr, *cur = head;
        // k 个一组反转
        for (; len >= k; len -= k) {

            // 迭代 -- 反转(参考反转链表I)
            // 因为哨兵节点的存在,所以是 k 次而不是 k-1 次反转
            for (int i = 0; i < k; ++i) { // k 次反转
                ListNode *pre = cur->next; // pre 右移
                cur->next = nex; // 反转
                nex = cur; // nex 右移
                cur = pre; // cur 右移
            }

            // 当前组 与 上一组尾&&下一组头 连接
            ListNode *p1 = p0->next; // 新的p0
            p0->next->next = cur; // 下一组头
            p0->next = nex; // 上一组尾
            p0 = p1; // 更新p0
        }

        return temp->next; // 返回新链表的头节点
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/549308.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python 全栈体系【四阶】(二十八)

第五章 深度学习 四、TensorFlow 1. Tensorflow 简介 1.1 什么是 Tensorflow TensorFlow 由谷歌人工智能团队谷歌大脑&#xff08;Google Brain&#xff09;开发和维护的开源深度学习平台&#xff0c;是目前人工智能领域主流的开发平台&#xff0c;在全世界有着广泛的用户群…

项目升级到jdk21后 SpringBoot相关组件的适配

了解到jdk21是一个LTS版本&#xff0c;可以稳定支持协程的功能。经过调研&#xff0c;将目前线上的jdk8升级到21&#xff0c;使用协程提升并发性能。 目前系统使用springBoot 2.0.3.RELEASE&#xff0c;并且引入了mybatis-spring-boot-starter、spring-boot-starter-data-redi…

电商技术揭秘22:智能仓储与物流优化(上)

相关系列文章 电商技术揭秘一&#xff1a;电商架构设计与核心技术 电商技术揭秘二&#xff1a;电商平台推荐系统的实现与优化 电商技术揭秘三&#xff1a;电商平台的支付与结算系统 电商技术揭秘四&#xff1a;电商平台的物流管理系统 电商技术揭秘五&#xff1a;电商平台…

Hot100【十一】: 347. 前 K 个高频元素

class Solution {public int[] topKFrequent(int[] nums, int k) {// 1.建立hash表来存储每个元素以及它的频率HashMap<Integer, Integer> num2Fre new HashMap<Integer, Integer>();for (int num : nums) {num2Fre.put(num, num2Fre.getOrDefault(num, 0) 1);}/…

白盒测试-基本路径覆盖

​ 路径覆盖可以使程序中的路径都被测试到&#xff0c;但是&#xff0c;要对程序中的路径做到完全覆盖经常是无法实现的。为了解决这一难题&#xff0c;我们需要在保证测试质量的前提下把测试的路径数量压缩到一定的范围内 ​ 基本路径覆盖法是在程序控制流图的基础上&#xf…

基于ADB的Scrcpy实现电脑控制手机

Scrcpy是一个开源的&#xff0c;基于ADB&#xff08;Android 调试桥&#xff09;的手机到电脑上的投屏操控的实现&#xff0c;本文将介绍如何搭建开发环境&#xff0c;使得在Windows系统中去控制投屏的安卓手机。 1. 安装投屏软件 下载Scrcpy软件到电脑上&#xff0c;该软件中…

JVM主要知识点详解

目录 1. 性能监控和调优 1.1 调优相关参数 1.2 内存泄漏排查 1.3 cpu飙⾼ 2. 内存与垃圾回收 2.1JVM的组成&#xff08;面试题&#xff09; 2.2 Java虚拟机栈的组成 2.3 本地方法栈 2.4 堆 2.5 方法区&#xff08;抽象概念&#xff09; 2.5.1 方法区和永久代以及元空…

【vue】Pinia-2 安装Pinia,使用store

1. 安装Pinia 在项目路径下执行npm install pinia 在package.json中查看 2. 使用store 在main.js中添加 import { createPinia } from pinia const pinia createPinia()修改createApp方法 最后示例如下&#xff08;三处修改&#xff09; import { createApp } from vue //…

基于Docker构建CI/CD工具链(七)使用Jmeter进行自动化压测

上一篇文章中&#xff0c;我们详细介绍了构建 Apifox Cli 的 Docker 镜像的步骤&#xff0c;并通过简单的示例演示了如何利用 GitLab 的 CI/CD 功能&#xff0c;将构建好的镜像利用在自动化测试作业中。在今天的文章中&#xff0c;我们将重点讨论如何构建 JMeter 的 Docker 镜像…

【高通平台】如何升级蓝牙的firmware

1. 您可以使用以下命令升级固件 adb push apbtfw11.tlv /bt_firmware/image/ adb push apnv11.bin /bt_firmware/image/ adb shell sync 或者 adb push crbtfw21.tlv /vendor/bt_firmware/image adb push crnv21.bin /vendor/bt_firmware/image adb shell sync 查看代码路径…

项目5-博客系统3+接口完

1.实现显示用户信息 ⽬前⻚⾯的⽤⼾信息部分是写死的. 形如 我们期望这个信息可以随着用户登陆而发生改变. • 如果当前⻚⾯是博客列表⻚, 则显⽰当前登陆⽤⼾的信息. • 如果当前⻚⾯是博客详情⻚, 则显⽰该博客的作者⽤⼾信息. 注意: 当前我们只是实现了显⽰⽤⼾名, 没有…

Linux学习(1)

参考学习韩顺平老师 第一章&#xff1a;LINUX 开山篇-内容介绍 1.2.Linux 使用在那些地方 linux运营工程师主要做&#xff1a; 服务器规划 调试优化 对系统进行日常监控 故障处理 对数据的备份和处理 日志的分析 1.3.Linux 的应用领域 1.个人桌面领域的应用 …

短视频底层逻辑分析

短视频底层逻辑 1.迭代模型_ev 2.Douyin的本质_ev 3.Douyin的审核机制_ev 4.平台趋势_ev 5.定位_ev 6.建立用户期待_ev 7.好内容的定义_ev 8怎么做好内容_ev 9.如何做好选题_ev 10.如何快速模仿_ev 11.账号拆解的底层逻辑_ev 12选人的重要性_ev 13.内容的包装_ev 14.打造大IP的…

easyexcel升级3.3.4失败的经历

原本想通过easyexcel从2.2.6升级到3.3.3解决一部分问题&#xff0c;结果之前的可以用的代码&#xff0c;却无端的出现bug 1 Sheet index (1) is out of range (0…0) 什么都没有改&#xff0c;就出了问题&#xff0c;那么问题肯定出现在easyexcel版本自身.使用模板填充的方式进…

Innodb之redo日志

Innodb引擎执行流程 redo log ​ MySQL中的redo log&#xff08;重做日志&#xff09;是实现WAL&#xff08;预写式日志&#xff09;技术的关键组件&#xff0c;用于确保事务的持久性和数据库的crash-safe能力。借用《孔乙己》中酒店掌柜使用粉板记录赊账的故事&#xff0c;…

Flask前端页面文本框展示后端变量,路由函数内外两类

一、外&#xff01;路由函数外的前后端数据传输 Flask后端 ↓ 首先导入包&#xff0c;需要使用 后端&#xff1a;flask_socketio来进行路由外的数据传输&#xff0c; from flask_socketio import SocketIO, emit 前端&#xff1a;还有HTML头文件的设置。 <!DOCTYPE …

【云原生数据库:原理与实践】1- 数据库发展历程

1-数据库发展历程 1.1 数据库发展概述 从1960年&#xff1a;Integrated Database System&#xff08;IDS&#xff09;&#xff0c;该系统是一个网状模型&#xff08;Network Model&#xff09;到 IMS&#xff08;Information Management System&#xff09;&#xff0c;使用了…

Rust腐蚀服务器清档多教程

Rust腐蚀服务器清档多教程 大家好我是艾西&#xff0c;一个做服务器租用的网络架构师。上期教了大家怎么搭建服务器以及安装插件等那么随着大家自己架设服或是玩耍的时间肯定会有小伙伴想要去新增开区数量或是把原本的服务器进行一些调整等&#xff0c;那么今天主要聊的就是怎…

【智能算法】鸭群算法(DSA)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2021年&#xff0c;Zhang等人受到自然界鸭群觅食行为启发&#xff0c;提出了鸭群算法&#xff08;Duck Swarm Algorithm, DSA&#xff09;。 2.算法原理 2.1算法思想 DSA基于自然界鸭群觅食过程&…

[leetcode] max-area-of-island

. - 力扣&#xff08;LeetCode&#xff09; 给你一个大小为 m x n 的二进制矩阵 grid 。 岛屿 是由一些相邻的 1 (代表土地) 构成的组合&#xff0c;这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0&#xff08;代表水&…