使用 Tranformer 进行概率时间序列预测实战

使用 Transformers 进行概率时间序列预测实战

通常,经典方法针对数据集中的每个时间序列单独拟合。然而,当处理大量时间序列时,在所有可用时间序列上训练一个“全局”模型是有益的,这使模型能够从许多不同的来源学习潜在的表示。

深度学习非常适合训练 全局概率模型,而不是训练局部点预测模型,因为神经网络可以从几个相关的时间序列中学习表示,并对数据的不确定性进行建模。

在概率设定中学习某些选定参数分布的未来参数很常见,例如高斯分布或 Student-T,或者学习条件分位数函数,或使用适应时间序列设置的共型预测框架。通过采用经验均值或中值,人们总是可以将概率模型转变为点预测模型。

时间序列Transformer

这篇博文中,我们将利用传统 vanilla Transformer 进行单变量概率预测任务 (即预测每个时间序列的一维分布)。由于 Encoder-Decoder Transformer 很好地封装了几个归纳偏差,所以它成为了我们预测的自然选择。

首先,使用 Encoder-Decoder 架构在推理时很有帮助。通常对于一些记录的数据,我们希望提前预知未来的一些预测步骤。我们可以在给定某种分布类型的情况下,从中抽样以提供预测,直到我们期望的预测范围。这被称为贪婪采样 (Greedy Sampling)/搜索。

其次,Transformer 帮助我们训练可能包含成千上万个时间点的时间序列数据。由于时间和内存限制,一次性将所有时间序列的完整历史输入模型或许不太可行。因此,在为随机梯度下降构建批次时,可以考虑适当的上下文窗口大小,并从训练数据中对该窗口和后续预测长度大小的窗口进行采样。可以将调整过大小的上下文窗口传递给编码器、预测窗口传递给 ausal-masked 解码器。

Transformers 相对于其他架构的另一个好处是,我们可以将缺失值作为编码器或解码器的额外掩蔽值,并且仍然可以在不诉诸于填充或插补的情况下进行训练。

01

设置环境

首先,让我们安装必要的库: Transformers、Datasets、Evaluate、Accelerate 和 GluonTS。

正如我们将展示的那样,GluonTS 将用于转换数据以创建特征以及创建适当的训练、验证和测试批次。

!pip install -q transformers
!pip install -q datasets
!pip install -q evaluate
!pip install -q accelerate
!pip install -q gluonts ujson

02

加载数据集

在这篇博文中,我们将使用 Hugging Face Hub 上提供的 tourism_monthly 数据集。该数据集包含澳大利亚 366 个地区的每月旅游流量。

此数据集是 Monash Time Series Forecasting 存储库的一部分,该存储库收纳了是来自多个领域的时间序列数据集。它可以看作是时间序列预测的 GLUE 基准。

from datasets import load_dataset
dataset = load_dataset("monash_tsf", "tourism_monthly")

可以看出,数据集包含 3 个片段: 训练、验证和测试。

dataset
DatasetDict({
        train: Dataset({
            features: ['start', 'target', 'feat_static_cat', 'feat_dynamic_real', 'item_id'],
            num_rows: 366
        })
        test: Dataset({
            features: ['start', 'target', 'feat_static_cat', 'feat_dynamic_real', 'item_id'],
            num_rows: 366
        })
        validation: Dataset({
            features: ['start', 'target', 'feat_static_cat', 'feat_dynamic_real', 'item_id'],
            num_rows: 366
        })
    })

每个示例都包含一些键,其中 start 和 target 是最重要的键。让我们看一下数据集中的第一个时间序列:

train_example = dataset['train'][0]
train_example.keys()


dict_keys(['start', 'target', 'feat_static_cat', 'feat_dynamic_real', 'item_id'])

start 仅指示时间序列的开始 (类型为 datetime) ,而 target 包含时间序列的实际值。

start 将有助于将时间相关的特征添加到时间序列值中,作为模型的额外输入 (例如“一年中的月份”) 。因为我们已经知道数据的频率是 每月,所以也能推算第二个值的时间戳为 1979-02-01,等等。

print(train_example['start'])
print(train_example['target'])
1979-01-01 00:00:00
    [1149.8699951171875, 1053.8001708984375, ..., 5772.876953125]

验证集包含与训练集相同的数据,只是数据时间范围延长了 prediction_length 那么多。这使我们能够根据真实情况验证模型的预测。

与验证集相比,测试集还是比验证集多包含 prediction_length 时间的数据 (或者使用比训练集多出数个 prediction_length 时长数据的测试集,实现在多重滚动窗口上的测试任务)。

validation_example = dataset['validation'][0]
validation_example.keys()


dict_keys(['start', 'target', 'feat_static_cat', 'feat_dynamic_real', 'item_id'])

验证的初始值与相应的训练示例完全相同:

print(validation_example['start'])
print(validation_example['target'])


1979-01-01 00:00:00
    [1149.8699951171875, 1053.8001708984375, ..., 5985.830078125]

但是,与训练示例相比,此示例具有 prediction_length=24 个额外的数据。让我们验证一下。

freq = "1M"
prediction_length = 24


assert len(train_example["target"]) + prediction_length == len(
    validation_example["target"]
)

让我们可视化一下:

import matplotlib.pyplot as plt


figure, axes = plt.subplots()
axes.plot(train_example["target"], color="blue")
axes.plot(validation_example["target"], color="red", alpha=0.5)


plt.show()

03

将 start 更新为 pd.Period

我们要做的第一件事是根据数据的 freq 值将每个时间序列的 start 特征转换为 pandas 的 Period 索引:

from functools import lru_cache


import pandas as pd
import numpy as np


@lru_cache(10_000)
def convert_to_pandas_period(date, freq):
    return pd.Period(date, freq)


def transform_start_field(batch, freq):
    batch["start"] = [convert_to_pandas_period(date, freq) for date in batch["start"]]
    return batch

这里我们使用 datasets 的 set_transform 来实现:

from functools import partial


train_dataset.set_transform(partial(transform_start_field, freq=freq))
test_dataset.set_transform(partial(transform_start_field, freq=freq))

定义模型

接下来,让我们实例化一个模型。该模型将从头开始训练,因此我们不使用 from_pretrained 方法,而是从 config 中随机初始化模型。

我们为模型指定了几个附加参数:

  • prediction_length (在我们的例子中是 24 个月) : 这是 Transformer 的解码器将学习预测的范围;

  • context_length: 如果未指定 context_length,模型会将 context_length (编码器的输入) 设置为等于 prediction_length;

  • 给定频率的 lags(滞后): 这将决定模型“回头看”的程度,也会作为附加特征。例如对于 Daily 频率,我们可能会考虑回顾 [1, 2, 7, 30, …],也就是回顾 1、2……天的数据,而对于 Minute数据,我们可能会考虑 [1, 30, 60, 60*24, …] 等;

  • 时间特征的数量: 在我们的例子中设置为 2,因为我们将添加 MonthOfYear 和 Age 特征;

  • 静态类别型特征的数量: 在我们的例子中,这将只是 1,因为我们将添加一个“时间序列 ID”特征;

  • 基数: 将每个静态类别型特征的值的数量构成一个列表,对于本例来说将是 [366],因为我们有 366 个不同的时间序列;

  • 嵌入维度: 每个静态类别型特征的嵌入维度,也是构成列表。例如 [3] 意味着模型将为每个 366 时间序列 (区域) 学习大小为 3 的嵌入向量。

让我们使用 GluonTS 为给定频率 (“每月”) 提供的默认滞后值:

from gluonts.time_feature import get_lags_for_frequency


lags_sequence = get_lags_for_frequency(freq)
print(lags_sequence)


>>> [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 23, 24, 25, 35, 36, 37]

这意味着我们每个时间步将回顾长达 37 个月的数据,作为附加特征。我们还检查 GluonTS 为我们提供的默认时间特征:

from gluonts.time_feature import time_features_from_frequency_str


time_features = time_features_from_frequency_str(freq)
print(time_features)


>>> [<function month_of_year at 0x7fa496d0ca70>]

在这种情况下,只有一个特征,即“一年中的月份”。这意味着对于每个时间步长,我们将添加月份作为标量值 (例如,如果时间戳为 “january”,则为 1;如果时间戳为 “february”,则为 2,等等) 。

我们现在准备好定义模型需要的所有内容了:

from transformers import TimeSeriesTransformerConfig, TimeSeriesTransformerForPrediction


config = TimeSeriesTransformerConfig(
    prediction_length=prediction_length,
    # context length:
    context_length=prediction_length * 2,
    # lags coming from helper given the freq:
    lags_sequence=lags_sequence,
    # we'll add 2 time features ("month of year" and "age", see further):
    num_time_features=len(time_features) + 1,
    # we have a single static categorical feature, namely time series ID:
    num_static_categorical_features=1,
    # it has 366 possible values:
    cardinality=[len(train_dataset)],
    # the model will learn an embedding of size 2 for each of the 366 possible values:
    embedding_dimension=[2],


    # transformer params:
    encoder_layers=4,
    decoder_layers=4,
    d_model=32,
)


model = TimeSeriesTransformerForPrediction(config)

请注意,与 Transformers 库中的其他模型类似,TimeSeriesTransformerModel 对应于没有任何顶部前置头的编码器-解码器 Transformer,而 TimeSeriesTransformerForPrediction 对应于顶部有一个分布前置头 (distribution head) 的 TimeSeriesTransformerForPrediction。默认情况下,该模型使用 Student-t 分布 (也可以自行配置):

model.config.distribution_output


>>> student_t

这是具体实现层面与用于 NLP 的 Transformers 的一个重要区别,其中头部通常由一个固定的分类分布组成,实现为 nn.Linear 层。

定义转换

接下来,我们定义数据的转换,尤其是需要基于样本数据集或通用数据集来创建其中的时间特征。

同样,我们用到了 GluonTS 库。这里定义了一个 Chain (有点类似于图像训练的 torchvision.transforms.Compose) 。它允许我们将多个转换组合到一个流水线中。

from gluonts.time_feature import (
    time_features_from_frequency_str,
    TimeFeature,
    get_lags_for_frequency,
)
from gluonts.dataset.field_names import FieldName
from gluonts.transform import (
    AddAgeFeature,
    AddObservedValuesIndicator,
    AddTimeFeatures,
    AsNumpyArray,
    Chain,
    ExpectedNumInstanceSampler,
    InstanceSplitter,
    RemoveFields,
    SelectFields,
    SetField,
    TestSplitSampler,
    Transformation,
    ValidationSplitSampler,
    VstackFeatures,
    RenameFields,
)

下面的转换代码带有注释供大家查看具体的操作步骤。从全局来说,我们将迭代数据集的各个时间序列并添加、删除某些字段或特征:

from transformers import PretrainedConfig


def create_transformation(freq: str, config: PretrainedConfig) -> Transformation:
    remove_field_names = []
    if config.num_static_real_features == 0:
        remove_field_names.append(FieldName.FEAT_STATIC_REAL)
    if config.num_dynamic_real_features == 0:
        remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)
    if config.num_static_categorical_features == 0:
        remove_field_names.append(FieldName.FEAT_STATIC_CAT)


    # a bit like torchvision.transforms.Compose
    return Chain(
        # step 1: remove static/dynamic fields if not specified
        [RemoveFields(field_names=remove_field_names)]
        # step 2: convert the data to NumPy (potentially not needed)
        + (
            [
                AsNumpyArray(
                    field=FieldName.FEAT_STATIC_CAT,
                    expected_ndim=1,
                    dtype=int,
                )
            ]
            if config.num_static_categorical_features > 0
            else []
        )
        + (
            [
                AsNumpyArray(
                    field=FieldName.FEAT_STATIC_REAL,
                    expected_ndim=1,
                )
            ]
            if config.num_static_real_features > 0
            else []
        )
        + [
            AsNumpyArray(
                field=FieldName.TARGET,
                # we expect an extra dim for the multivariate case:
                expected_ndim=1 if config.input_size == 1 else 2,
            ),
            # step 3: handle the NaN's by filling in the target with zero
            # and return the mask (which is in the observed values)
            # true for observed values, false for nan's
            # the decoder uses this mask (no loss is incurred for unobserved values)
            # see loss_weights inside the xxxForPrediction model
            AddObservedValuesIndicator(
                target_field=FieldName.TARGET,
                output_field=FieldName.OBSERVED_VALUES,
            ),
            # step 4: add temporal features based on freq of the dataset
            # month of year in the case when freq="M"
            # these serve as positional encodings
            AddTimeFeatures(
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_TIME,
                time_features=time_features_from_frequency_str(freq),
                pred_length=config.prediction_length,
            ),
            # step 5: add another temporal feature (just a single number)
            # tells the model where in its life the value of the time series is,
            # sort of a running counter
            AddAgeFeature(
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_AGE,
                pred_length=config.prediction_length,
                log_scale=True,
            ),
            # step 6: vertically stack all the temporal features into the key FEAT_TIME
            VstackFeatures(
                output_field=FieldName.FEAT_TIME,
                input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
                + (
                    [FieldName.FEAT_DYNAMIC_REAL]
                    if config.num_dynamic_real_features > 0
                    else []
                ),
            ),
            # step 7: rename to match HuggingFace names
            RenameFields(
                mapping={
                    FieldName.FEAT_STATIC_CAT: "static_categorical_features",
                    FieldName.FEAT_STATIC_REAL: "static_real_features",
                    FieldName.FEAT_TIME: "time_features",
                    FieldName.TARGET: "values",
                    FieldName.OBSERVED_VALUES: "observed_mask",
                }
            ),
        ]
    )

InstanceSplitter

对于训练、验证、测试步骤,接下来我们创建一个 InstanceSplitter,用于从数据集中对窗口进行采样 (因为由于时间和内存限制,我们无法将整个历史值传递给 Transformer)。

实例拆分器从数据中随机采样大小为 context_length 和后续大小为 prediction_length 的窗口,并将 past_ 或 future_ 键附加到各个窗口的任何临时键。这确保了 values 被拆分为 past_values 和后续的 future_values 键,它们将分别用作编码器和解码器的输入。同样我们还需要修改 time_series_fields 参数中的所有键:

from gluonts.transform.sampler import InstanceSampler
from typing import Optional


def create_instance_splitter(
    config: PretrainedConfig,
    mode: str,
    train_sampler: Optional[InstanceSampler] = None,
    validation_sampler: Optional[InstanceSampler] = None,
) -> Transformation:
    assert mode in ["train", "validation", "test"]


    instance_sampler = {
        "train": train_sampler
        or ExpectedNumInstanceSampler(
            num_instances=1.0, min_future=config.prediction_length
        ),
        "validation": validation_sampler
        or ValidationSplitSampler(min_future=config.prediction_length),
        "test": TestSplitSampler(),
    }[mode]


    return InstanceSplitter(
        target_field="values",
        is_pad_field=FieldName.IS_PAD,
        start_field=FieldName.START,
        forecast_start_field=FieldName.FORECAST_START,
        instance_sampler=instance_sampler,
        past_length=config.context_length + max(config.lags_sequence),
        future_length=config.prediction_length,
        time_series_fields=["time_features", "observed_mask"],
    )

创建 DataLoader

有了数据,下一步需要创建 PyTorch DataLoaders。它允许我们批量处理成对的 (输入, 输出) 数据,即 (past_values, future_values)。

from typing import Iterable


import torch
from gluonts.itertools import Cached, Cyclic
from gluonts.dataset.loader import as_stacked_batches




def create_train_dataloader(
    config: PretrainedConfig,
    freq,
    data,
    batch_size: int,
    num_batches_per_epoch: int,
    shuffle_buffer_length: Optional[int] = None,
    cache_data: bool = True,
    **kwargs,
) -> Iterable:
    PREDICTION_INPUT_NAMES = [
        "past_time_features",
        "past_values",
        "past_observed_mask",
        "future_time_features",
    ]
    if config.num_static_categorical_features > 0:
        PREDICTION_INPUT_NAMES.append("static_categorical_features")


    if config.num_static_real_features > 0:
        PREDICTION_INPUT_NAMES.append("static_real_features")


    TRAINING_INPUT_NAMES = PREDICTION_INPUT_NAMES + [
        "future_values",
        "future_observed_mask",
    ]


    transformation = create_transformation(freq, config)
    transformed_data = transformation.apply(data, is_train=True)
    if cache_data:
        transformed_data = Cached(transformed_data)


    # we initialize a Training instance
    instance_splitter = create_instance_splitter(config, "train")


    # the instance splitter will sample a window of
    # context length + lags + prediction length (from the 366 possible transformed time series)
    # randomly from within the target time series and return an iterator.
    stream = Cyclic(transformed_data).stream()
    training_instances = instance_splitter.apply(
        stream, is_train=True
    )


    return as_stacked_batches(
        training_instances,
        batch_size=batch_size,
        shuffle_buffer_length=shuffle_buffer_length,
        field_names=TRAINING_INPUT_NAMES,
        output_type=torch.tensor,
        num_batches_per_epoch=num_batches_per_epoch,
    )

def create_test_dataloader(
    config: PretrainedConfig,
    freq,
    data,
    batch_size: int,
    **kwargs,
):
    PREDICTION_INPUT_NAMES = [
        "past_time_features",
        "past_values",
        "past_observed_mask",
        "future_time_features",
    ]
    if config.num_static_categorical_features > 0:
        PREDICTION_INPUT_NAMES.append("static_categorical_features")


    if config.num_static_real_features > 0:
        PREDICTION_INPUT_NAMES.append("static_real_features")


    transformation = create_transformation(freq, config)
    transformed_data = transformation.apply(data, is_train=False)


    # we create a Test Instance splitter which will sample the very last
    # context window seen during training only for the encoder.
    instance_sampler = create_instance_splitter(config, "test")


    # we apply the transformations in test mode
    testing_instances = instance_sampler.apply(transformed_data, is_train=False)


    return as_stacked_batches(
        testing_instances,
        batch_size=batch_size,
        output_type=torch.tensor,
        field_names=PREDICTION_INPUT_NAMES,
    )

train_dataloader = create_train_dataloader(
    config=config,
    freq=freq,
    data=train_dataset,
    batch_size=256,
    num_batches_per_epoch=100,
)


test_dataloader = create_test_dataloader(
    config=config,
    freq=freq,
    data=test_dataset,
    batch_size=64,
)

让我们检查第一批:

batch = next(iter(train_dataloader))
for k, v in batch.items():
    print(k, v.shape, v.type())


>>> past_time_features torch.Size([256, 85, 2]) torch.FloatTensor
    past_values torch.Size([256, 85]) torch.FloatTensor
    past_observed_mask torch.Size([256, 85]) torch.FloatTensor
    future_time_features torch.Size([256, 24, 2]) torch.FloatTensor
    static_categorical_features torch.Size([256, 1]) torch.LongTensor
    future_values torch.Size([256, 24]) torch.FloatTensor
    future_observed_mask torch.Size([256, 24]) torch.FloatTensor

可以看出,我们没有将 input_ids 和 attention_mask 提供给编码器 (训练 NLP 模型时也是这种情况),而是提供 past_values,以及 past_observed_mask、past_time_features、static_categorical_features 和 static_real_features 几项数据。

解码器的输入包括 future_values、future_observed_mask 和 future_time_features。future_values 可以看作等同于 NLP 训练中的 decoder_input_ids。

前向传播

让我们对刚刚创建的批次执行一次前向传播:

# perform forward pass
outputs = model(
    past_values=batch["past_values"],
    past_time_features=batch["past_time_features"],
    past_observed_mask=batch["past_observed_mask"],
    static_categorical_features=batch["static_categorical_features"]
    if config.num_static_categorical_features > 0
    else None,
    static_real_features=batch["static_real_features"]
    if config.num_static_real_features > 0
    else None,
    future_values=batch["future_values"],
    future_time_features=batch["future_time_features"],
    future_observed_mask=batch["future_observed_mask"],
    output_hidden_states=True,
)

print("Loss:", outputs.loss.item())


>>> Loss: 9.069628715515137

目前,该模型返回了损失值。这是由于解码器会自动将 future_values 向右移动一个位置以获得标签。这允许计算预测结果和标签值之间的误差。

另请注意,解码器使用 Causal Mask 来避免预测未来,因为它需要预测的值在 future_values 张量中。

训练模型

是时候训练模型了!我们将使用标准的 PyTorch 训练循环。

这里我们用到了 Accelerate 库,它会自动将模型、优化器和数据加载器放置在适当的 device 上。

from accelerate import Accelerator
from torch.optim import AdamW


accelerator = Accelerator()
device = accelerator.device


model.to(device)
optimizer = AdamW(model.parameters(), lr=6e-4, betas=(0.9, 0.95), weight_decay=1e-1)


model, optimizer, train_dataloader = accelerator.prepare(
    model,
    optimizer,
    train_dataloader,
)


model.train()
for epoch in range(40):
    for idx, batch in enumerate(train_dataloader):
        optimizer.zero_grad()
        outputs = model(
            static_categorical_features=batch["static_categorical_features"].to(device)
            if config.num_static_categorical_features > 0
            else None,
            static_real_features=batch["static_real_features"].to(device)
            if config.num_static_real_features > 0
            else None,
            past_time_features=batch["past_time_features"].to(device),
            past_values=batch["past_values"].to(device),
            future_time_features=batch["future_time_features"].to(device),
            future_values=batch["future_values"].to(device),
            past_observed_mask=batch["past_observed_mask"].to(device),
            future_observed_mask=batch["future_observed_mask"].to(device),
        )
        loss = outputs.loss


        # Backpropagation
        accelerator.backward(loss)
        optimizer.step()


        if idx % 100 == 0:
            print(loss.item())

模型推理

在推理时,建议使用 generate() 方法进行自回归生成,类似于 NLP 模型。

预测的过程会从测试实例采样器中获得数据。采样器会将数据集的每个时间序列的最后 context_length 那么长时间的数据采样出来,然后输入模型。请注意,这里需要把提前已知的 future_time_features 传递给解码器。

该模型将从预测分布中自回归采样一定数量的值,并将它们传回解码器最终得到预测输出:

model.eval()


forecasts = []


for batch in test_dataloader:
    outputs = model.generate(
        static_categorical_features=batch["static_categorical_features"].to(device)
        if config.num_static_categorical_features > 0
        else None,
        static_real_features=batch["static_real_features"].to(device)
        if config.num_static_real_features > 0
        else None,
        past_time_features=batch["past_time_features"].to(device),
        past_values=batch["past_values"].to(device),
        future_time_features=batch["future_time_features"].to(device),
        past_observed_mask=batch["past_observed_mask"].to(device),
    )
    forecasts.append(outputs.sequences.cpu().numpy())

该模型输出一个表示结构的张量 (batch_size, number of samples, prediction length)。

下面的输出说明: 对于大小为 64 的批次中的每个示例,我们将获得接下来 24 个月内的 100 个可能的值:

forecasts[0].shape


>>> (64, 100, 24)

我们将垂直堆叠它们,以获得测试数据集中所有时间序列的预测:

forecasts = np.vstack(forecasts)
print(forecasts.shape)


>>> (366, 100, 24)

我们可以根据测试集中存在的样本值,根据真实情况评估生成的预测。这里我们使用数据集中的每个时间序列的 MASE 和 sMAPE 指标 (metrics) 来评估:

from evaluate import load
from gluonts.time_feature import get_seasonality


mase_metric = load("evaluate-metric/mase")
smape_metric = load("evaluate-metric/smape")


forecast_median = np.median(forecasts, 1)


mase_metrics = []
smape_metrics = []
for item_id, ts in enumerate(test_dataset):
    training_data = ts["target"][:-prediction_length]
    ground_truth = ts["target"][-prediction_length:]
    mase = mase_metric.compute(
        predictions=forecast_median[item_id], 
        references=np.array(ground_truth), 
        training=np.array(training_data), 
        periodicity=get_seasonality(freq))
    mase_metrics.append(mase["mase"])


    smape = smape_metric.compute(
        predictions=forecast_median[item_id], 
        references=np.array(ground_truth), 
    )
    smape_metrics.append(smape["smape"])
print(f"MASE: {np.mean(mase_metrics)}")


>>> MASE: 1.2564196892177717


print(f"sMAPE: {np.mean(smape_metrics)}")


>>> sMAPE: 0.1609541520852549

我们还可以单独绘制数据集中每个时间序列的结果指标,并观察到其中少数时间序列对最终测试指标的影响很大:

plt.scatter(mase_metrics, smape_metrics, alpha=0.3)
plt.xlabel("MASE")
plt.ylabel("sMAPE")
plt.show()

为了根据基本事实测试数据绘制任何时间序列的预测,我们定义了以下辅助绘图函数:

import matplotlib.dates as mdates


def plot(ts_index):
    fig, ax = plt.subplots()


    index = pd.period_range(
        start=test_dataset[ts_index][FieldName.START],
        periods=len(test_dataset[ts_index][FieldName.TARGET]),
        freq=freq,
    ).to_timestamp()


    # Major ticks every half year, minor ticks every month,
    ax.xaxis.set_major_locator(mdates.MonthLocator(bymonth=(1, 7)))
    ax.xaxis.set_minor_locator(mdates.MonthLocator())


    ax.plot(
        index[-2*prediction_length:], 
        test_dataset[ts_index]["target"][-2*prediction_length:],
        label="actual",
    )


    plt.plot(
        index[-prediction_length:], 
        np.median(forecasts[ts_index], axis=0),
        label="median",
    )


    plt.fill_between(
        index[-prediction_length:],
        forecasts[ts_index].mean(0) - forecasts[ts_index].std(axis=0), 
        forecasts[ts_index].mean(0) + forecasts[ts_index].std(axis=0), 
        alpha=0.3, 
        interpolate=True,
        label="+/- 1-std",
    )
    plt.legend()
    plt.show()

总结

正如时间序列研究人员所知,人们对“将基于 Transformer 的模型应用于时间序列”问题很感兴趣。传统 vanilla Transformer 只是众多基于注意力 (Attention) 的模型之一,因此需要向库中补充更多模型。

目前没有什么能妨碍我们继续探索对多变量时间序列进行建模,但是为此需要使用多变量分布头来实例化模型。目前已经支持了对角独立分布,后续会增加其他多元分布支持。请继续关注未来的博客文章以及其中的教程。

最后,NLP/CV 领域从 大型预训练模型 中获益匪浅,但据我们所知,时间序列领域并非如此。基于 Transformer 的模型似乎是这一研究方向的必然之选,我们迫不及待地想看看研究人员和从业者会发现哪些突破!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/546543.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

神经网络学习笔记——大白话直观理解!

B站梗直哥、梗直哥丶的个人空间-梗直哥丶个人主页-哔哩哔哩视频 什么是神经网络模型?神经网络模型是一种由大量互相连接的神经元构成的算法模型,它受到生物神经元网络的启发,擅长对输入数据进行分类和模式识别。 神经网络模型最擅长的就是个各种分类问题。 神经网络模型最擅…

RN向上向下滑动组件封装(带有渐变色)

这段组件代码逻辑是出事有一个View和下面的块,下面的块也就是红色区域可以按住向上向下滑动,当滑动到屏幕最上面则停止滑动,再向上滑动的过程中,上方的View的背景色也会有个渐变效果,大概逻辑就是这样 代码如下 import React, {useEffect, useRef, useState} from react; impo…

第18天:信息打点-APP资产知识产权应用监控静态提取动态抓包动态调试

第十八天 本课意义 1.如何获取到目标APP信息 2.如何从APP信息中提取资产 一、Web&备案信息&单位名称中发现APP 1.通过查询网站去查询APP信息 https://www.xiaolanben.com/ https://aiqicha.baidu.com/ https://www.qimai.cn/ https://app.diandian.com/ 2.其他…

嵌入式学习day16-22(2024.04.06-13)

文章目录 C语言网络编程socket主机与网络字节序转换inet_addr、inet_aton&#xff08;ip转换&#xff09;inet_ntoa 网络字节序转换为IP字符串端口转换为网络字节序网络字节序转换为端口atoi &#xff08;字符串转换为整数&#xff09; UDP通信流程UDP多进程并发服务器服务端客…

沐风老师3DMAX物品摆放插件ObjectPlacer安装和使用方法详解

3DMAX物品摆放插件ObjectPlacer安装和使用教程 3DMAX物品摆放插件ObjectPlacer&#xff0c;一键在曲面上摆放对象&#xff0c;如摆放家具物品、种植花草树木、布设电线杆交通标志等。它的功能是将对象与几何体对象&#xff08;网格、多边形、面片或NURBS&#xff09;的面法线对…

RISCV指令集体系简读之RV32I

RV32I 指令格式 用于寄存器-寄存器操作的R类型指令用于短立即数和访存load操作的I型指令用于访存store操作的s型指令用于条件跳转操作的B类型指令用于长立即数的U型指令用于无条件跳转的J型指令 特点&#xff1a; 所有指令都是32bits&#xff0c; 简化了指令解码&#xff1b;…

LangChain学习笔记与样程

LangChain 是一个开源的机器学习工具库&#xff0c;专门用于构建和部署基于语言的应用程序。这个库提供了一系列工具和接口&#xff0c;使开发者能够轻松地整合和使用大型语言模型&#xff0c;例如 OpenAI 提供的 GPT。LangChain 的核心特点包括模块化设计、灵活性和易用性&…

linnux文件服务

1.FTP:文件传输协议。 基础:控制端口(身份验证) command 21/tcp 数据端口: data 20/tcp FTP Server默认配置:yum -y install vsftpd (安装vsftpd&#xff09; touch /var/ftp/abc.txt(创建文件) systemctl start vsftpd(启动文件&#xff09; systemctl …

osg渲染过程

目录 1、渲染最简单代码 2、详解run方法 3、详细过程 4、回调函数 5、Node Visitor 1、渲染最简单代码 2、详解run方法 3、详细过程 3.1 advance()方法 进行帧计数 3.2 eventTraversal() eventTraversal()响应用户操作,eventTraversal()遍历的是事件队列&#xff0c;而…

java:多线程

多线程 在java程序中同时执行多个线程,每个线程独立执行不同的任务. 可以提高程序的性能和资源利用率,增加程序的并发性. 多线程的作用 1,提高程序性能 可以将一个任务分解成多个子任务并行处理,从而提高程序的运行速度 2,提高资源利用率 可以更好地利用CPU资源,提高CPU…

【每日刷题】Day15

【每日刷题】Day15 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; 目录 1. 141. 环形链表 - 力扣&#xff08;LeetCode&#xff09; 2. 142. 环形链表 II - 力扣&#xff08;LeetCode&#xff09; 3. 143. 重…

基于Python的卷积网络的车牌识别系统,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

CST电磁仿真的点/线/面设置操作【入门基础】

选择点/线/面 通过Pick功能选择点/线/面的方法 Modeling > Picks > Picks > Pick Points, Edges or Faces Pick是在模型上或任意空间中选择Point、Edge、Face的功能。利用Pick功能可以轻松获取模型的位置、尺寸等信息&#xff0c;也可以在执行Modeling和Result Han…

Xxl-job执行器自动注册不上的问题

今天新建的项目要部署xxl-job&#xff0c;之前部署过好多次&#xff0c;最近没怎么部署&#xff0c;生疏了。部署完之后&#xff0c;服务一直没有注册到执行器管理里面&#xff0c;找了半天也没找到原因&#xff0c;看数据库里的xxl_job_registry表也是一直有数据进来。 后来看…

46.HarmonyOS鸿蒙系统 App(ArkUI)网格布局

Grid(){GridItem(){Button(按钮1).fontSize(28)}.backgroundColor(Color.Blue)GridItem(){Text(数学).fontSize(28)}.backgroundColor(Color.Yellow)GridItem(){Text(语文).fontSize(28)}.backgroundColor(Color.Green)GridItem(){Text(英语).fontSize(28)}.backgroundColor(Co…

数据结构(算法)

总结&#xff0c;建议看EXCEL的《算法》页签&#xff0c;不然感觉有点乱 备注原理/步骤时间复杂度空间复杂度串的应用模式匹配简单/暴力O(mn) KMP  O(mn) 树的应用树哈夫曼树1、带权路径长度WPL 2、外部排序-最佳归并树1、哈夫曼树的度&#xff0c;只有0和m&#xff08;m叉…

七月审稿之提升模型效果的三大要素:prompt、数据质量、训练策略(含Reviewer2和PeerRead)​

前言 我带队的整个大模型项目团队超过40人了&#xff0c;分六个项目组&#xff0c;每个项目组都是全职带兼职&#xff0c;且都会每周确定任务/目标/计划&#xff0c;然后各项目组各自做任务拆解&#xff0c;有时同组内任务多时 则2-4人一组 方便并行和讨论&#xff0c;每周文档…

Normalizing Flows

需要学的是神经网络 f f f, 用于完成从source distribution (Pz)&#xff08;latent space&#xff0c;一般为高斯分布&#xff09;到 target distribution (Px) 的映射。 Normalizing Flows 是一种强大的生成模型&#xff0c;它通过学习一个可逆且易于计算的转换来将复杂的概…

(弟弟14)递归•按顺序打印一个整数的每一位

这里是目录哦 题目代码运行截图递归思路递归停止条件如何实现“按顺序”悟了✨加油&#x1f389; 题目 按顺序打印一个整数的每一位。 代码 #include<stdio.h> void Print(int n) {if (n > 9)//递归停止条件{Print(n / 10);//不断趋近递归停止条件}printf("%d…

代码随想录算法训练营Day56|LC583 两个字符串的删除操作LC72 编辑距离

一句话总结&#xff1a;看起来复杂&#xff0c;动规分析以后就比较简单。 原题链接&#xff1a;583 两个字符串的删除操作 本质就是求两个字符串的最短子序列的长度。已经做过&#xff0c;不再详解。 class Solution {public int minDistance(String word1, String word2) {/…