如何在OceanBase v4.2 中快速生成随机数据

在使用传统数据库如 MySQL 和 Oracle 时,由于缺乏多样化的随机数据生成方案,或者实现成本过高,构造随机数据的开发成本受到了影响。OceanBase在老版本中虽然有相应的解决方案,但语法复杂和性能较差等问题仍然存在。

现在,OceanBase v4.2 实现了简洁、高效且批量的随机数据插入操作。以下是一个 SQL 示例,它可向 t1 表中批量插入 100 行数据,每行均包含四个随机数值以及一个随机生成的字符串。

create table t1 (c1 varchar(10), c2 bigint, c3 bigint, c4 bigint, c5 bigint);

insert into t1 select     
  randstr(10, random()) c1,
  random() c2,
  zipf(1, 100, random(3)),
  normal(0, 1, random()),
  uniform(1, 100, random())
from 
  table(generator(100));

select * from t1;

背景

我们在实践中发现,功能测试、压力测试、PoC 等等场景下都会涉及到随机数据生成,OceanBase v4.2 之前的版本存在两类问题:

  • 随机函数种类少,不支持数据分布控制,需要手写 UDF 或 PL 包。
  • 多行数据生成时,需要用 CONNECT BY 或 CTE,它们不仅语法复杂,而且数据行数较多时存在性能问题

下面用两个场景来说明我们亟需更好用的接口。

场景一:OceanBase 测试。

OceanBase 拥有大量的 mysqltest 测试用例,但这些用例中创建的表一般都不超过百行数据,导致一些潜在场景覆盖不到。为了增加覆盖率,我们需要给表中灌入更多数据,但在 v4.2 版之前这并不是一件容易事:

  • insert into values 方法手工构造 values 很费劲,有多少行数据就要构造多少组值。
  • insert into select 方法构造多行数据需要使用复杂的语法,并且性能不高,导致很少有工程师使用。
  • 需要测试数据倾斜场景时,必须手工构造倾斜值,最后设计出来的 case 倾斜值的 NDV 大部分都是1、2 或者3,测试效果大打折扣。
  • 需要测试长字符串场景时,只能使用 repeat、lpad、rpad 这类函数来构造长字符串,这些方法构造出来的字符串很有规律,通过存储层 lz、zstd 等压缩算法处理后占用空间会很小,也可能导致测试效果不尽人意。

场景二:OceanBase PoC。

两年前,我的一个同事在周末从 PoC 现场给我打电话咨询如何生成 1000 万行数据插入到数据库中,我给他介绍了 CTE 法和 CONNECT BY 法,但这两个方法都因为性能太差用不起来。最后他使用了“手工倍增法”:

Create table t1 (c1 bigint);
Insert into t1 values (1);
Insert into t1 select * from t1; // 现在 t1 包含 2 行数据
Insert into t1 select * from t1; // 现在 t1 包含4行数据
Insert into t1 select * from t1; // 现在 t1 包含8行数据
Insert into t1 select * from t1; // 现在 t1 包含16行数据
…
Insert into t1 select * from t1; // 现在 t1 包含65536行数据
…

为了让传统 MySQL 客户快速的体验 OceanBase 极速的性能,我们可以在 QuickStart 中让他构建一个十万行的表来体验极速查询性能。构建十万行数据,无论是 insert into values 方法,还是“手工倍增法”,导数体验都很糟糕

OceanBase v4.2 提供了全新的多行数据导入功能,彻底解决了上述痛点。它包含如下特性:

  1. 简洁易记的导数语法。
  2. 支持任意长度的随机字符串生成函数。
  3. 支持分布函数,轻松构造倾斜数据。
  4. Oracle 模式下引入原生内置随机函数,解决 PL 包性能不足问题。

OceanBase v4.2 随机行数据生成方法

随机数

为 MySQL 和 Oracle 模式统一增加了一套原生函数,提供完善的功能和最好的性能。

  • 无论 MySQL 还是 Oracle 模式,都增加同名函数,丰富了函数种类。
  • 无论 MySQL 还是 Oracle 模式,都提供原生内置函数,性能最优。
  • 随机函数支持传入种子值,使得随机序列可复现,对测试友好。

1. 随机函数。

RANDOM([N]):随机生成一个 64 位整数。N 是整数,为随机种子,可选。

RANDSTR(N, gen):随机生成长度为 N 的字符串,gen 为随机方法,可选值为:

    • RANDOM
    • NORMAL - 生成的字符串服从正态分布 
    • UNIFORM - 生成的字符串服从均匀分布
    • ZIPF - 生成的字符串服从齐夫分布
    • 任意常数 - 生成同一个字符串

1700795000

2.分布控制。

NORMAL(<mean> , <stddev> , <gen>):正态分布(高斯分布),返回一个符合正态分布(normal distribution,又称高斯分布)的浮点数。

1700795127

UNIFORM(<min> , <max> , <gen>):均匀分布,返回一个符合均匀分布(uniform distribution)的整数或浮点数。

1700795190

ZIPF(<s> , <N> , <gen>):齐夫分布,返回一个符合齐夫分布(zipf distribution)的整数。齐普夫定律是语言学专家Zipf在研究英文单词出现的频率时,发现如果把单词出现的频率按由大到小的顺序排列,则每个单词出现的频率与它的名次的常数次幂存在简单的反比关系,这种分布就称为Zipf定律,它表明在英语单词中,只有极少数的词被经常使用,而绝大多数词很少被使用。实际上,包括汉语在内的许多国家的语言都有这种特点。这个定律后来在很多领域得到了同样的验证,例如著名的28定律。 

1700795260

随机函数部分,我们在已有的 rand() 浮点随机数函数基础上,引入了直接生成整数值的 random() 函数,直接生成随机字符串的 randstr() 函数。同时,还引入了 normal、uniform、zipf 等几个分布控制函数,这使得我们能轻松控制生成数据的分布规律。

关于生成器表达式是一个比较新的概念,特别说明如下:

  • 每个随机分布函数都需要一个生成器表达式(gen)作为其最后一个参数。生成器表达式可以是常量或变量:
    • 如果是常量,则随机分布函数的结果是常量。
    • 如果是变量,则随机分布函数的结果是可变的。
  • 任何可转换为64位整数的表达式都可以用作生成器表达式。
  • 任何随机分布函数的随机性都直接与其生成器表达式的随机性相关。对于大多数实际目的,random() 函数是随机生成整数值的最佳选择。
  • 由数据生成函数生成的序列不能保证有序且没有间隙。这是因为数字可能会以并行的方式、不同步地生成。

行数据生成

Table function是一种在SQL语言中使用的函数,它能够返回一张数据表作为结果。与传统的SQL函数只能返回标量值不同,table function 可以返回多行、多列的数据集。 我们新增 generator 函数,并允许在 table function 中调用它,最终返回 N 行数据。语法为:table(generator(N)); 

N 是一个大于等于0的64位正整数。

使用举例:

OceanBase(TEST@TEST)>SELECT COUNT(*) FROM TABLE(GENERATOR(100000));
+----------+
| COUNT(*) |
+----------+
|   100000 |
+----------+
1 row in set (0.02 sec)

select normal(0, 1, random()) from table(generator(5));
+------------------------+
| NORMAL(0, 1, RANDOM()) |
|------------------------|
|           0.227384164  |
|           0.9945290748 |
|          -0.2045078571 |
|          -1.594607893  |
|          -0.8213296842 |
+------------------------+

select randstr(1, zipf(1, 5, random())) str from table(generator(5));
+------------------------+
|                    str |
|------------------------|
|                     A  |
|                     D  |
|                     A  |
|                     A  |
|                     C  |
+------------------------+

table generator 也可以和其它表做 join:


OceanBase(admin@test)>create table t1 (c1 bigint);
Query OK, 0 rows affected (0.18 sec)

OceanBase(admin@test)>insert into t1 values (1), (2);
Query OK, 2 rows affected (0.03 sec)
Records: 2  Duplicates: 0  Warnings: 0

OceanBase(admin@test)>select c1, random(1) from t1, table(generator(3));
+------+----------------------+
| c1   | random(1)            |
+------+----------------------+
|    1 | -6753783847308464280 |
|    2 | -6707106347154343346 |
|    1 |  -899926183391115878 |
|    2 | -8835543475904200562 |
|    1 | -2750444335953844424 |
|    2 |  7588216632478230601 |
+------+----------------------+
6 rows in set (0.00 sec)

OceanBase(admin@test)>explain select c1, random(1) from t1, table(generator(3));
+--------------------------------------------------------------------+
| Query Plan                                                         |
+--------------------------------------------------------------------+
| ================================================================== |
| |ID|OPERATOR                   |NAME       |EST.ROWS|EST.TIME(us)| |
| ------------------------------------------------------------------ |
| |0 |NESTED-LOOP JOIN CARTESIAN |           |398     |14          | |
| |1 | FUNCTION_TABLE            |FUNC_TABLE1|199     |1           | |
| |2 | MATERIAL                  |           |2       |2           | |
| |3 |  TABLE SCAN               |t1         |2       |2           | |
| ================================================================== |
| Outputs & filters:                                                 |
| -------------------------------------                              |
|   0 - output([t1.c1], [random(1)]), filter(nil), rowset=256        |
|       conds(nil), nl_params_(nil), batch_join=false                |
|   1 - output(nil), filter(nil)                                     |
|       value(generator(3))                                          |
|   2 - output([t1.c1]), filter(nil), rowset=256                     |
|   3 - output([t1.c1]), filter(nil), rowset=256                     |
|       access([t1.c1]), partitions(p0)                              |
|       is_index_back=false, is_global_index=false,                  |
|       range_key([t1.__pk_increment]), range(MIN ; MAX)always true  |
+--------------------------------------------------------------------+
19 rows in set (0.00 sec)

OceanBase(admin@test)>select /*+ parallel(2) */ c1, random(1) from t1, table(generator(3));
+------+----------------------+
| c1   | random(1)            |
+------+----------------------+
|    1 | -6753783847308464280 |
|    2 | -6707106347154343346 |
|    1 |  -899926183391115878 |
|    2 | -8835543475904200562 |
|    1 | -2750444335953844424 |
|    2 |  7588216632478230601 |
+------+----------------------+
6 rows in set (0.00 sec)

OceanBase(admin@test)>explain select /*+ parallel(2) */ c1, random(1) from t1, table(generator(3));
+--------------------------------------------------------------------+
| Query Plan                                                         |
+--------------------------------------------------------------------+
| ================================================================== |
| |ID|OPERATOR                   |NAME       |EST.ROWS|EST.TIME(us)| |
| ------------------------------------------------------------------ |
| |0 |NESTED-LOOP JOIN CARTESIAN |           |398     |14          | |
| |1 | FUNCTION_TABLE            |FUNC_TABLE1|199     |1           | |
| |2 | MATERIAL                  |           |2       |2           | |
| |3 |  PX COORDINATOR           |           |2       |2           | |
| |4 |   EXCHANGE OUT DISTR      |:EX10000   |2       |2           | |
| |5 |    PX BLOCK ITERATOR      |           |2       |1           | |
| |6 |     TABLE SCAN            |t1         |2       |1           | |
| ================================================================== |
| Outputs & filters:                                                 |
| -------------------------------------                              |
|   0 - output([t1.c1], [random(1)]), filter(nil), rowset=256        |
|       conds(nil), nl_params_(nil), batch_join=false                |
|   1 - output(nil), filter(nil)                                     |
|       value(generator(3))                                          |
|   2 - output([t1.c1]), filter(nil), rowset=256                     |
|   3 - output([t1.c1]), filter(nil), rowset=256                     |
|   4 - output([t1.c1]), filter(nil), rowset=256                     |
|       dop=2                                                        |
|   5 - output([t1.c1]), filter(nil), rowset=256                     |
|   6 - output([t1.c1]), filter(nil), rowset=256                     |
|       access([t1.c1]), partitions(p0)                              |
|       is_index_back=false, is_global_index=false,                  |
|       range_key([t1.__pk_increment]), range(MIN ; MAX)always true  |
+--------------------------------------------------------------------+
26 rows in set (0.00 sec)

无论是否开启并行执行,Table Generator 都是使用单线程来生成数据。不过不用担心性能问题,目前向存储层插入数据的过程才是瓶颈,单线程生成数据不是瓶颈。

性能评测

在 OceanBase 中,我们对比了 Connect By、Recursive CTE 和 Table Generator 生成行数据性能,每行包含一列整数。生成 1000 万行数据,Table Generator 只需 2 秒,完全满足日常需求。

Oracle Mode Connect ByMySQL ModeRecursive CTETable Generator
生成1w行数据耗时0.02s0.83s0.002s
生成10w行数据耗时0.18s10s+(timeout)0.02s
生成100w行数据耗时Out Of Memory10s+(timeout)0.21s
生成1000w行数据耗时Out Of Memory10s+(timeout)2.05s

最佳实践

在了解基本概念后,下面给出一些常见的随机数据生成场景,以展示基本用法。

有主键表随机数据生成

推荐搭配 sequence 对象:

create table t1 (c1 bigint primary key, c2 bigint);
create sequence s1 cache 1000000 noorder;
Insert into t1 select s1.nextval, random() from table(generator(1000));
Insert into t1 select s1.nextval, random() from table(generator(1000));

Note:为了尽可能提高生成数据的性能,sequence cache 大小不要低于 100 万。

千万行级别的随机数据生成

推荐配合使用 OceanBase 4.1 推出“旁路导入”功能,以获得最高的性能。只需要添加append enable_parallel_dml parallel(8) hint 即可,此处使用了并行度8:

create table t1 (c1 bigint, c2 varchar(10));
Insert /*+ append enable_parallel_dml parallel(8) */ into t1 select random(), randstr(10, random()) from table(generator(10000000));

Note:考虑到 OceanBase 4.2 版本旁路导入的最佳实践,建议用一条 insert 语句完成单表全部数据插入,不要拆成多条 insert 来做。

生成包含多个宏块的数据

为了测试包含多个宏块的场景,我们需要插入大量的数据。但是偶尔我们会发现,即使插入了大量行,OceanBase 凭借其强大的压缩能力,把这些数据都给压缩没了。即使插入了数十万行,还装不满一个宏块。

Oracle 模式下为了解决这个问题,我们可以在建表时加上 NOCOMPRESS属性,这样,插入很少的数据就能装满一个宏块。例如:

create table t1 (c1 bigint, c2 varchar(10000)) NOCOMPRESS;
Insert /* append enable_parallel_dml parallel(8) */ into t1 select random(), repeat('a', 10000) from table(generator(10000000));

MySQL 模式下没有 NOCOMPRESS 选项,可以使用 randstr() 来生成足够长的随机串避免压缩。

create table t1 (c1 bigint, c2 varchar(10000));
Insert /* append enable_parallel_dml parallel(8) */ into t1 select random(), randstr(1000, random()) from table(generator(10000000));

测试并行执行场景推荐使用本方法,有助于提前暴露数据切分相关问题。

倾斜数据生成

我们可以让数据符合正态分布或 zipf 分布,这样就能构造出数据倾斜。例如下面随机生成 20 行数据,zipf 分布可以让小数字出现的频率更高:

OceanBase(TEST@TEST)>select zipf(1, 20, random()) from table(generator(20));
+---------------------+
| ZIPF(1,20,RANDOM()) |
+---------------------+
|                   0 |
|                   0 |
|                   4 |
|                   5 |
|                  12 |
|                   4 |
|                  16 |
|                   1 |
|                   2 |
|                   9 |
|                   0 |
|                   0 |
|                   0 |
|                   1 |
|                   3 |
|                   7 |
|                  11 |
|                  13 |
|                   1 |
|                   1 |
+---------------------+
20 rows in set (0.00 sec)

Note: zipf 生成的数字的分布的特点是小数字出现频率高,大数字出现频率低。

长短不一的字符串生成

OceanBase(TEST@TEST)>select randstr(1+zipf(1, 20, random()), random()) from table(generator(20));
+-----------------------------------------+
| RANDSTR(1+ZIPF(1,20,RANDOM()),RANDOM()) |
+-----------------------------------------+
| 1E                                      |
| VM                                      |
| wxYJ                                    |
| zoBaL                                   |
| IhaZW                                   |
| 8z6jaVWxG92vs1kx                        |
| roDKzcJ2JS                              |
| IVwBKZsvix8z                            |
| 8D                                      |
| UTM                                     |
| 9alknanS                                |
| rSxQ9kD4lm                              |
| 9                                       |
| 9MXuz                                   |
| r                                       |
| i1c                                     |
| nE16vM52jW                              |
| XG1                                     |
| bSdeZi                                  |
| 2TuvyPMVSf                              |
+-----------------------------------------+
20 rows in set (0.00 sec)

批量插入单词

一些场景下,我们希望插入的字符串有一定规律,不要长得像乱码。比如,插入的内容是字典里的单词。可以通过预先构造一个单词表解决这个问题:

OceanBase(admin@test)>create table t1 (c1 int, c2 varchar(10));
Query OK, 0 rows affected (0.168 sec)

OceanBase(admin@test)>insert into t1 values (0, 'hello'), (1, 'world'), (2, 'movie');
Query OK, 3 rows affected (0.011 sec)
Records: 3  Duplicates: 0  Warnings: 0

OceanBase(admin@test)>create table t2 (c1 varchar(10));
Query OK, 0 rows affected (0.160 sec)

OceanBase(admin@test)>insert /*+ parallel(3) enable_parallel_dml */ into t2 select b.c2 from table(generator(1000)) a, t1 b where b.c1 = random() % 3;
Query OK, 1000 rows affected (0.015 sec)
Records: 1000  Duplicates: 0  Warnings: 0

插入部分 null 值

在数据集中掺入 null 值,常能有效暴露一些潜在 bug。MySQL 模式中可以用 if 来实现在随机数中掺 null,Oracle 模式下,可以用 decode 来实现。下面的例子里,都以 10% 的概率生成 null 值:

OceanBase(admin@test)>select  if(random(4) % 10 = 0, null, random(4)) from table(generator(10));
+-----------------------------------------+
| if(random(4) % 10 = 0, null, random(4)) |
+-----------------------------------------+
|                     5267436225003336391 |
|                                    NULL |
|                     -851690886662571060 |
|                     1738617244330437274 |
|                    -8073957877497551694 |
|                      885116094377146851 |
|                    -8183226488433301506 |
|                     6294187330509591201 |
|                    -8511555461190104804 |
|                     4732822798680798032 |
+-----------------------------------------+
10 rows in set (0.000 sec)
OceanBase(TEST@TEST)>select decode(mod(random(4),10), 0, null, random(4)) from table(generator(10));
+--------------------------------------------+
| DECODE(MOD(RANDOM(4),10),0,NULL,RANDOM(4)) |
+--------------------------------------------+
| 5267436225003336391                        |
| NULL                                       |
| -851690886662571060                        |
| 1738617244330437274                        |
| -8073957877497551694                       |
| 885116094377146851                         |
| -8183226488433301506                       |
| 6294187330509591201                        |
| -8511555461190104804                       |
| 4732822798680798032                        |
+--------------------------------------------+
10 rows in set (0.002 sec)

mysqltest 中如何生成稳定的随机数据

Mysqltest 要求数据必须稳定,否则每次回归的结果都不一样。我们只需要传入一个常数种子(seed)到随机函数中就可以保证每次插入到表中的数据是一样的。所谓 seed 就是给 random() 函数传入一个任意的常量值,seed 相同,每次执行输出的结果都相同。例如下面的例子中,3 就是 seed。

create table t1 (c1 int);
Insert into t1 select random(3) from table(generator(1000));

加速数据插入

配合并行DML(PDML)可以加速数据插入速度:

create table t1 (c1 int, c2 int);
Insert /*+ parallel(4) enable_parallel_dml */ into t1 select random(), random() from table(generator(10000000));

如果没有事务要求,也可以搭配上旁路导入功能,导数性能可以更高:

create table t1 (c1 int, c2 int);
Insert /*+ append parallel(4) enable_parallel_dml */ into t1 select random(), random() from table(generator(10000000));

Note:OceanBase v4.2 版本的旁路导入功能还不支持事务,我们计划在未来版本里添加事务支持。

附录:OceanBase 老版本随机数据生成方法

随机数

随机数生成针对Oracle和MySQL提供了不同的方法。

针对Oracle,提供了DBMS_RANDOM 包,示例如下:

OceanBase(TEST@TEST)>create table t1 (c1 int);
inQuery OK, 0 rows affected (0.350 sec)

OceanBase(TEST@TEST)>insert into t1 values (1),(2);
Query OK, 2 row affected (0.054 sec)

OceanBase(TEST@TEST)>SELECT DBMS_RANDOM.value FROM t1;
+-----------------------------------------+
| DBMS_RANDOM.VALUE                       |
+-----------------------------------------+
|  .7399915858834366379526638344258521027 |
| .49582434020991574649964366641874399825 |
+-----------------------------------------+
2 rows in set (0.001 sec)

OceanBase(TEST@TEST)>SELECT DBMS_RANDOM.random FROM t1;
+--------------------+
| DBMS_RANDOM.RANDOM |
+--------------------+
|        -1829272250 |
|         -302482048 |
+--------------------+
2 rows in set (0.001 sec)

OceanBase(TEST@TEST)>SELECT DBMS_RANDOM.string('u', 10) FROM t1;
+----------------------------+
| DBMS_RANDOM.STRING('U',10) |
+----------------------------+
| CXYOOFFTAK                 |
| ISQXVGILZS                 |
+----------------------------+
2 rows in set (0.003 sec)

OceanBase(TEST@TEST)>SELECT DBMS_RANDOM.string('l', 10) FROM t1;
+----------------------------+
| DBMS_RANDOM.STRING('L',10) |
+----------------------------+
| tesckgmuhd                 |
| qumsrewisr                 |
+----------------------------+
2 rows in set (0.006 sec)

OceanBase(TEST@TEST)>SELECT DBMS_RANDOM.normal() FROM t1;
+--------------------------------------------+
| DBMS_RANDOM.NORMAL()                       |
+--------------------------------------------+
| -.3707362774912783852056768030439781065643 |
|  -.661863938694328133730598207745367381443 |
+--------------------------------------------+
2 rows in set (0.002 sec)

而对于MySQL,则提供了rand() 函数,示例如下:

OceanBase(admin@test)>create table t1 (c1 int);
Query OK, 0 rows affected (0.143 sec)

OceanBase(admin@test)>insert into t1 values (1),(2);
Query OK, 2 rows affected (0.014 sec)
Records: 2  Duplicates: 0  Warnings: 0

OceanBase(admin@test)>select rand() from t1;
+---------------------+
| rand()              |
+---------------------+
|  0.3246343818722613 |
| 0.20731560718949474 |
+---------------------+
2 rows in set (0.005 sec)

可以看到,MySQL 模式下随机函数种类太少(云平台客户大部分使用的是 MySQL 模式)。虽然 Oracle 包提供的随机函数是比较丰富的,但目前因为实现缘故,在大批量数据插入场景使用 DBMS_RANDOM 包有比较大的性能开销。

行数据生成

为了生成 1000 行数据,老版本的 OceanBase 使用如下方法:

对于Oracle,使用Connect By方法,示例如下:

OceanBase(TEST@TEST)>SELECT COUNT(*)  FROM
    (SELECT * FROM dual CONNECT BY LEVEL <= 100000) a;
+----------+
| COUNT(*) |
+----------+
|   100000 |
+----------+
1 row in set (0.16 sec)

对于MySQL,使用Recursive CTE方法,示例如下:

OceanBase(admin@test)>WITH RECURSIVE cte1 (n) AS 
    (SELECT 1 UNION ALL SELECT n+1 FROM cte1 WHERE n < 10000 )
    SELECT COUNT(*) FROM cte1;
+----------+
| COUNT(*) |
+----------+
|    10000 |
+----------+
1 row in set (0.79 sec)

可以看到:语法的确是比较复杂,记起来不容易,两个方法的实现性能也不太良好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/545750.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

主播美颜SDK:实现精细化美颜功能的关键技术分析

主播美颜SDK作为实现精细化美颜功能的关键技术&#xff0c;其背后蕴含着丰富的算法和工程技术。本文将对主播美颜SDK的关键技术进行深入分析&#xff0c;探讨其实现精细化美颜功能的原理与方法。 图像识别与面部分析 通过图像识别技术&#xff0c;SDK能够准确地识别出人脸位置…

策略模式类图与代码

某大型购物中心欲开发一套收银软件&#xff0c;要求其能够支持购物中心在不同时期推出的各种促销活动&#xff0c;如打折、返利(例如&#xff0c;满300返100),等等。现采用策略(Strategy)模式实现该要求&#xff0c;得到如图7.13 所示的类图。 【Java 代码】 import java.util…

数字时代的引领者:揭示Facebook的社交创新

随着信息技术的飞速发展&#xff0c;人们的社交方式也发生了巨大的变化。从最初的互联网聊天室到如今的社交网络平台&#xff0c;我们已经见证了数字社交的不断演变和发展。而随着区块链技术的兴起&#xff0c;Web3时代的到来将为数字社交带来全新的可能性和挑战。本文将探讨社…

【北京迅为】《iTOP-3588开发板系统编程手册》第4章 目录IO和文件属性

RK3588是一款低功耗、高性能的处理器&#xff0c;适用于基于arm的PC和Edge计算设备、个人移动互联网设备等数字多媒体应用&#xff0c;RK3588支持8K视频编解码&#xff0c;内置GPU可以完全兼容OpenGLES 1.1、2.0和3.2。RK3588引入了新一代完全基于硬件的最大4800万像素ISP&…

[MySQL]数据库原理8——喵喵期末不挂科

希望你开心&#xff0c;希望你健康&#xff0c;希望你幸福&#xff0c;希望你点赞&#xff01; 最后的最后&#xff0c;关注喵&#xff0c;关注喵&#xff0c;关注喵&#xff0c;大大会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的…

构建鸿蒙ACE静态库

搭建开发环境 根据说明文档下载鸿蒙全部代码&#xff0c;一般采取第四种方式获取最新代码(请保证代码为最新) 源码获取Windows下载编译环境 MinGW GCC 7.3.0版本 请添加环境变量IDE 可以使用两种 CLion和Qt,CLion不带有环境需要安装MinGW才可以开发,Qt自带MinGW环境&#xff0…

Itasca pfc3d/3dec/flac3d/massflow 9.0 授权

所有 Itasca 软件都建立在每个程序基础的共同元素层之上——无论程序使用何种数值方法或元素。因此&#xff0c;无论是使用 DEM 软件&#xff08;如 3DEC 或 PFC&#xff09;&#xff0c;还是使用 FLAC3D 等连续体软件&#xff0c;都会有许多流程、实用程序和功能是所有这些软件…

靠Python实现经济自由,学会了你也可以

不知道大家有没有注意到&#xff0c;最近关注的很多人都在聊“副业and兼职”这件事。 毕竟单一收入已经不能满足现代人的需求了。 对于普通人来说&#xff0c;想要跳出固定思维和舒适圈&#xff0c;相比于孤注一掷的创业&#xff0c;更推荐兼职。 很多人想要创业&#xff0c;…

【Qt】:对话框(二)

对话框 一.消息对话框&#xff08;QMessageBox&#xff09;1.自己构建2.使用静态函数构建 二.颜色对话框&#xff08;QDialog&#xff09;三.文件对话框&#xff08;QFileDialog&#xff09;四.字体对话框&#xff08;QFontDialog&#xff09;五.输入对话框&#xff08;QInputD…

JMM(Java Memory Model java内存模型

目标&#xff1a; 搞清楚高并发场景下&#xff0c;java内存模型是怎么支持的&#xff0c;对象在内存中是怎么布局的&#xff1f; 目录 目标&#xff1a; 搞清楚高并发场景下&#xff0c;java内存模型是怎么支持的&#xff0c;对象在内存中是怎么布局的&#xff1f; 1.硬件层…

华火电焰灶全国经销商加盟_优势怎么样_费用多少_华焰天下

随着科技的不断进步&#xff0c;电焰灶作为现代厨房的重要设备&#xff0c;其市场需求持续增长。华火电焰灶&#xff0c;凭借其独特的技术优势和广泛的市场前景&#xff0c;吸引了众多投资者的目光。本文将从华火电焰灶的优势、加盟费用以及华焰天下的机遇三个方面&#xff0c;…

配置IP地址并验证连通性

1.实验环境 主机 A和主机 B通过一根网线相连&#xff0c;如图6.13所示。 图6.13 实验案例一示意图 2.需求描述 为两台主机配置!P地址&#xff0c;验证P地址是否生效&#xff1b;验证同一网段的两台主机可以互通&#xff0c;不同网段的主机不能直接互通。 3.推荐步骤 为两台…

第四百五十四回

文章目录 1. 问题描述2. 优化方法2.1 缩小范围2.2 替代方法 3. 示例代码4. 内容总结 我们在上一章回中介绍了"如何获取AppBar的高度"相关的内容&#xff0c;本章回中将介绍关于MediaQuery的优化.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 问题描述 我们在…

自己开发的App如何上架,详细解读App上架操作流程

对于企业或个人开发的App&#xff0c;上架是必经之路。然而&#xff0c;许多人不清楚如何进行App上架。工信部在2023年规定&#xff0c;App必须备案才能上架。那么&#xff0c;让我们一起了解App上架流程吧。 1. 准备上架所需材料 在上架App之前&#xff0c;需要准备应用图标…

【学习笔记十三】EWM常见上架策略介绍

一、手工维护上架策略 系统不确定Storage type 和 bin&#xff0c;需要在创建仓库任务时或者确认仓库任务时手工输入仓位 1.后台配置-定义存储类型的类型0010 ①存储行为&#xff1a;标准仓位 ②入库规则&#xff1a;空仓未或添加至现有库存/空仓位 ③通用仓库任务&#x…

【学习笔记十二】EWM上架仓位确定逻辑及操作演示

一、前言 关于EWM上架仓位确定的过程&#xff0c;我在【学习笔记十一】EWM上架目标仓位确定过程及配置-CSDN博客中讲到了 EWM根据仓库类型&#xff08;storage type&#xff09;、仓库分区&#xff08;storage section&#xff09;和上架策略&#xff08;putaway strategies&…

绿色地狱steam叫什么 绿色地狱steam怎么搜

绿色地狱steam叫什么 绿色地狱steam怎么搜 《绿色地狱》是一款以亚马逊雨林为背景的开放世界生存模拟游戏。玩家们扮演一名被困在丛林中的冒险者&#xff0c;玩家在游戏内需要学习采集资源、建造庇护所、狩猎和烹饪食物&#xff0c;同时要面对丛林中的危险和挑战&#xff0c;…

Oracle 19c补丁升级(Windows)

文章目录 一、打补丁前备份检查1、补丁包获取2、备份数据包以及数据库软件3、检查OPatch版本 二、补丁升级1、更新OPatch2、关闭监听以及服务3、补丁升级过程4、启动监听以及服务 三、数据库补丁应用 一、打补丁前备份检查 1、补丁包获取 补丁包&#xff1a; 百度网盘链接&am…

Neo4j 图形数据库中有哪些构建块?

Neo4j 图形数据库具有以下构建块 - 节点属性关系标签数据浏览器 节点 节点是 Graph 的基本单位。 它包含具有键值对的属性&#xff0c;如下图所示。 NEmployee 节点 在这里&#xff0c;节点 Name "Employee" &#xff0c;它包含一组属性作为键值对。 属性 属性是…

李廉洋;4.12现货黄金,美原油最新走势分析及策略。

现货黄金在美盘末将历史新高刷至2377美元/盎司。美国3月份PPI指数较上年同期上升2.1%&#xff0c;为11个月来的最高增幅&#xff0c;这份数据加之此前火爆的CPI指数&#xff0c;为美联储实现2%目标所面临的坎坷之路奠定了基础。不过&#xff0c;PPI报告中的细节让担心通胀再度加…