目录
1.初识MQ
1.1.同步调用
1.2.异步调用
1.3.技术选型
2.RabbitMQ
2.1.收发消息
2.1.1.交换机
2.1.2.队列
2.1.3.绑定关系
2.1.4.发送消息
3.SpringAMQP
3.1WorkQueues模型
3.1.1消息接收
3.1.2测试
3.1.3.能者多劳
3.1.3.总结
3.2.交换机类型
3.3.Fanout交换机
3.4.Direct交换机
3.5.Topic交换机
3.6.基于注解声明
3.7.消息转换器
3.7.1.测试默认转换器
3.7.2.配置JSON转换器
3.7.3.消费者接收Object
微服务一旦拆分,必然涉及到服务之间的相互调用,目前我们服务之间调用采用的都是基于OpenFeign的调用。这种调用中,调用者发起请求后需要等待服务提供者执行业务返回结果后,才能继续执行后面的业务。也就是说调用者在调用过程中处于阻塞状态,因此我们成这种调用方式为同步调用,也可以叫同步通讯。但在很多场景下,我们可能需要采用异步通讯的方式,为什么呢?
我们先来看看什么是同步通讯和异步通讯。如图:
解读:
-
同步通讯:就如同打视频电话,双方的交互都是实时的。因此同一时刻你只能跟一个人打视频电话。
-
异步通讯:就如同发微信聊天,双方的交互不是实时的,你不需要立刻给对方回应。因此你可以多线操作,同时跟多人聊天。
实际开发中也有类似场景:
如图:用户登录,实际开发中还要经过风控、短信等微服务,如果是同步通讯。信息就得一个一个微服务的传递,效率很慢。等所有信息都返回了,用户已经等了很长时间了。
而异步通讯就类似于短信群发:
用户登录业务只需要把信息传到MQ当中,然后由MQ群发消息给各个微服务。各个微服务监听MQ的消息,收到信息以后就去做相应业务,并行执行,效率大大提高!
两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发微信可以同时与多个人收发微信,但是往往响应会有延迟。
所以,如果我们的业务需要实时得到服务提供方的响应,则应该选择同步通讯(同步调用)。而如果我们追求更高的效率,并且不需要实时响应,则应该选择异步通讯(异步调用)。
同步调用的方式我们已经学过了,之前的OpenFeign调用就是。但是:
-
异步调用又该如何实现?
-
哪些业务适合用异步调用来实现呢?
通过今天的学习你就能明白这些问题了。
1.初识MQ
1.1.同步调用
之前说过,我们现在基于OpenFeign的调用都属于是同步调用,那么这种方式存在哪些问题呢?
举个例子,我们以昨天留给大家作为作业的余额支付功能为例来分析,首先看下整个流程:
目前我们采用的是基于OpenFeign的同步调用,也就是说业务执行流程是这样的:
-
支付服务需要先调用用户服务完成余额扣减
-
然后支付服务自己要更新支付流水单的状态
-
然后支付服务调用交易服务,更新业务订单状态为已支付
三个步骤依次执行。
这其中就存在3个问题:
第一,拓展性差
我们目前的业务相对简单,但是随着业务规模扩大,产品的功能也在不断完善。
在大多数电商业务中,用户支付成功后都会以短信或者其它方式通知用户,告知支付成功。假如后期产品经理提出这样新的需求,你怎么办?是不是要在上述业务中再加入通知用户的业务?
某些电商项目中,还会有积分或金币的概念。假如产品经理提出需求,用户支付成功后,给用户以积分奖励或者返还金币,你怎么办?是不是要在上述业务中再加入积分业务、返还金币业务?
。。。
最终你的支付业务会越来越臃肿:
也就是说每次有新的需求,现有支付逻辑都要跟着变化,代码经常变动,不符合开闭原则,拓展性不好。
第二,性能下降
由于我们采用了同步调用,调用者需要等待服务提供者执行完返回结果后,才能继续向下执行,也就是说每次远程调用,调用者都是阻塞等待状态。最终整个业务的响应时长就是每次远程调用的执行时长之和:
暂时无法在飞书文档外展示此内容
假如每个微服务的执行时长都是50ms,则最终整个业务的耗时可能高达300ms,性能太差了。
第三,级联失败
由于我们是基于OpenFeign调用交易服务、通知服务。当交易服务、通知服务出现故障时,整个事务都会回滚,交易失败。
这其实就是同步调用的级联失败问题。
但是大家思考一下,我们假设用户余额充足,扣款已经成功,此时我们应该确保支付流水单更新为已支付,确保交易成功。毕竟收到手里的钱没道理再退回去吧。
因此,这里不能因为短信通知、更新订单状态失败而回滚整个事务。
优点:但不可否认的是,,同步调用的时效性强。比如上面支付业务,必须同步调用第一个用户服务,先扣减金额,立即得到返回结果,才能进行下一步!如果这里用异步调用的话,就会出现问题:我都还没扣减金额,支付就完成了,我怎么知道支付有没有成功?
因此,这里第一个用户服务采用同步调用,其他的服务采用异步调用。支付业务一进来,等用户扣减完金额,支付业务就可以结束了。剩下的业务等异步调用慢慢执行!
综上,同步调用的方式存在下列问题:
-
拓展性差
-
性能下降
-
级联失败
而要解决这些问题,我们就必须用异步调用的方式来代替同步调用。
1.2.异步调用
异步调用方式其实就是基于消息通知的方式,一般包含三个角色:
-
消息发送者:投递消息的人,就是原来的调用方
-
消息Broker:管理、暂存、转发消息,你可以把它理解成微信服务器
-
消息接收者:接收和处理消息的人,就是原来的服务提供方
在异步调用中,发送者不再直接同步调用接收者的业务接口,而是发送一条消息投递给消息Broker。然后接收者根据自己的需求从消息Broker那里订阅消息。每当发送方发送消息后,接受者都能获取消息并处理。
这样,发送消息的人和接收消息的人就完全解耦了。
还是以余额支付业务为例:
除了扣减余额、更新支付流水单状态以外,其它调用逻辑全部取消。而是改为发送一条消息到Broker。而相关的微服务都可以订阅消息通知,一旦消息到达Broker,则会分发给每一个订阅了的微服务,处理各自的业务。
假如产品经理提出了新的需求,比如要在支付成功后更新用户积分。支付代码完全不用变更,而仅仅是让积分服务也订阅监听消息即可:
不管后期增加了多少消息订阅者,作为支付服务来讲,执行问扣减余额、更新支付流水状态后,发送消息即可。业务耗时仅仅是这三部分业务耗时,仅仅100ms,大大提高了业务性能。
另外,不管是交易服务、通知服务,还是积分服务,他们的业务与支付关联度低。现在采用了异步调用,解除了耦合,他们即便执行过程中出现了故障,也不会影响到支付服务。
综上,异步调用的优势包括:
-
耦合度更低
-
性能更好
-
业务拓展性强
-
故障隔离,避免级联失败
当然,异步通信也并非完美无缺,它存在下列缺点:
-
完全依赖于Broker(消息代理)的可靠性、安全性和性能
-
不能立即得到结果,时效性差
-
不确定下游业务是否执行成功
-
架构复杂,后期维护和调试麻烦
那么什么样的场景下适合用异步调用呢?
1.对于对方的执行结果不关心
例:订单状态修改,就算是这次执行失败了,没有修改订单状态,但可以重复执行,最终有一天能够执行成功。
反例:查询逻辑,这种必须得到查询结果,所以不能用异步调用。
2.对性能要求较高
例:调用链很长,如果用同步调用,耗时太长。
1.3.技术选型
消息Broker,目前常见的实现方案就是消息队列(MessageQueue),简称为MQ.
目比较常见的MQ实现:
-
ActiveMQ
-
RabbitMQ
-
RocketMQ
-
Kafka
几种常见MQ的对比:
RabbitMQ | ActiveMQ | RocketMQ | Kafka | |
公司/社区 | Rabbit | Apache | 阿里 | Apache |
开发语言 | Erlang | Java | Java | Scala&Java |
协议支持 | AMQP,XMPP,SMTP,STOMP | OpenWire,STOMP,REST,XMPP,AMQP | 自定义协议 | 自定义协议 |
可用性 | 高 | 一般 | 高 | 高 |
单机吞吐量 | 一般 | 差 | 高 | 非常高 |
消息延迟 | 微秒级 | 毫秒级 | 毫秒级 | 毫秒以内 |
消息可靠性 | 高 | 一般 | 高 | 一般 |
追求可用性:Kafka、 RocketMQ 、RabbitMQ
追求可靠性:RabbitMQ、RocketMQ
追求吞吐能力:RocketMQ、Kafka
追求消息低延迟:RabbitMQ、Kafka
据统计,目前国内消息队列使用最多的还是RabbitMQ,再加上其各方面都比较均衡,稳定性也好,因此选择RabbitMQ来学习。
2.RabbitMQ
RabbitMQ对应的架构如图:
其中包含几个概念:
-
publisher
:生产者,也就是发送消息的一方 -
consumer
:消费者,也就是消费消息的一方 -
queue
:队列,存储消息。生产者投递的消息会暂存在消息队列中,等待消费者处理 -
exchange
:交换机,是负责消息路由 (可以路由给一个队列,也可以路由给所有队列,取决于交换机配置),没有存储消息的能力。生产者发送的消息由交换机决定投递到哪个队列。 -
virtual host
:虚拟主机,起到数据隔离的作用。每个虚拟主机相互独立,有各自的exchange、queue
2.1.收发消息
2.1.1.交换机
我们打开Exchanges选项卡,可以看到已经存在很多交换机:
我们点击任意交换机,即可进入交换机详情页面。仍然会利用控制台中的publish message 发送一条消息:
这里是由控制台模拟了生产者发送的消息。由于没有消费者存在,最终消息丢失了,这样说明交换机没有存储消息的能力。
2.1.2.队列
我们打开Queues
选项卡,新建一个队列:
命名为hello.queue1
:
再以相同的方式,创建一个队列,密码为hello.queue2
,最终队列列表如下:
此时,我们再次向amq.fanout
交换机发送一条消息。会发现消息依然没有到达队列!!
怎么回事呢?
发送到交换机的消息,只会路由到与其绑定的队列,因此仅仅创建队列是不够的,我们还需要将其与交换机绑定。
2.1.3.绑定关系
点击Exchanges
选项卡,点击amq.fanout
交换机,进入交换机详情页,然后点击Bindings
菜单,在表单中填写要绑定的队列名称:
相同的方式,将hello.queue2也绑定到改交换机。
最终,绑定结果如下:
2.1.4.发送消息
再次回到exchange页面,找到刚刚绑定的amq.fanout
,点击进入详情页,再次发送一条消息:
回到Queues
页面,可以发现hello.queue
中已经有一条消息了:
点击队列名称,进入详情页,查看队列详情,这次我们点击get message:
可以看到消息到达队列了:
这个时候如果有消费者监听了MQ的hello.queue1
或hello.queue2
队列,自然就能接收到消息了。
3.SpringAMQP
将来我们开发业务功能的时候,肯定不会在控制台收发消息,而是应该基于编程的方式。由于RabbitMQ
采用了AMQP协议,因此它具备跨语言的特性。任何语言只要遵循AMQP协议收发消息,都可以与RabbitMQ
交互。并且RabbitMQ
官方也提供了各种不同语言的客户端。
但是,RabbitMQ官方提供的Java客户端编码相对复杂,一般生产环境下我们更多会结合Spring来使用。而Spring的官方刚好基于RabbitMQ提供了这样一套消息收发的模板工具:SpringAMQP。并且还基于SpringBoot对其实现了自动装配,使用起来非常方便。
SpringAmqp的官方地址:
https://spring.io/projects/spring-amqp
SpringAMQP提供了三个功能:
-
自动声明队列、交换机及其绑定关系
-
基于注解的监听器模式,异步接收消息
-
封装了RabbitTemplate工具,用于发送消息
3.1WorkQueues模型
Work queues,任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息。
当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。这就是消息堆积问题。
当我们碰到消息堆积问题时,我们应该加快消费者的消息处理速度,那怎么加快消息处理速度呢?我们可以加多个消费者!
此时就可以使用work 模型,多个消费者共同处理消息处理,消息处理的速度就能大大提高了。
注:每个消息只能被一个消费者处理。
3.1.1消息接收
要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:
@RabbitListener(queues = "work.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {
System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());
Thread.sleep(20);
}
@RabbitListener(queues = "work.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {
System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());
Thread.sleep(200);
}
注意到这两消费者,都设置了Thead.sleep
,模拟任务耗时:
-
消费者1 sleep了20毫秒,相当于每秒钟处理50个消息
-
消费者2 sleep了200毫秒,相当于每秒处理5个消息
3.1.2测试
启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。
最终结果如下:
消费者1接收到消息:【hello, message_0】21:06:00.869555300
消费者2........接收到消息:【hello, message_1】21:06:00.884518
消费者1接收到消息:【hello, message_2】21:06:00.907454400
消费者1接收到消息:【hello, message_4】21:06:00.953332100
消费者1接收到消息:【hello, message_6】21:06:00.997867300
消费者1接收到消息:【hello, message_8】21:06:01.042178700
消费者2........接收到消息:【hello, message_3】21:06:01.086478800
消费者1接收到消息:【hello, message_10】21:06:01.087476600
消费者1接收到消息:【hello, message_12】21:06:01.132578300
消费者1接收到消息:【hello, message_14】21:06:01.175851200
消费者1接收到消息:【hello, message_16】21:06:01.218533400
消费者1接收到消息:【hello, message_18】21:06:01.261322900
消费者2........接收到消息:【hello, message_5】21:06:01.287003700
消费者1接收到消息:【hello, message_20】21:06:01.304412400
消费者1接收到消息:【hello, message_22】21:06:01.349950100
消费者1接收到消息:【hello, message_24】21:06:01.394533900
消费者1接收到消息:【hello, message_26】21:06:01.439876500
消费者1接收到消息:【hello, message_28】21:06:01.482937800
消费者2........接收到消息:【hello, message_7】21:06:01.488977100
消费者1接收到消息:【hello, message_30】21:06:01.526409300
消费者1接收到消息:【hello, message_32】21:06:01.572148
消费者1接收到消息:【hello, message_34】21:06:01.618264800
消费者1接收到消息:【hello, message_36】21:06:01.660780600
消费者2........接收到消息:【hello, message_9】21:06:01.689189300
消费者1接收到消息:【hello, message_38】21:06:01.705261
消费者1接收到消息:【hello, message_40】21:06:01.746927300
消费者1接收到消息:【hello, message_42】21:06:01.789835
消费者1接收到消息:【hello, message_44】21:06:01.834393100
消费者1接收到消息:【hello, message_46】21:06:01.875312100
消费者2........接收到消息:【hello, message_11】21:06:01.889969500
消费者1接收到消息:【hello, message_48】21:06:01.920702500
消费者2........接收到消息:【hello, message_13】21:06:02.090725900
消费者2........接收到消息:【hello, message_15】21:06:02.293060600
消费者2........接收到消息:【hello, message_17】21:06:02.493748
消费者2........接收到消息:【hello, message_19】21:06:02.696635100
消费者2........接收到消息:【hello, message_21】21:06:02.896809700
消费者2........接收到消息:【hello, message_23】21:06:03.099533400
消费者2........接收到消息:【hello, message_25】21:06:03.301446400
消费者2........接收到消息:【hello, message_27】21:06:03.504999100
消费者2........接收到消息:【hello, message_29】21:06:03.705702500
消费者2........接收到消息:【hello, message_31】21:06:03.906601200
消费者2........接收到消息:【hello, message_33】21:06:04.108118500
消费者2........接收到消息:【hello, message_35】21:06:04.308945400
消费者2........接收到消息:【hello, message_37】21:06:04.511547700
消费者2........接收到消息:【hello, message_39】21:06:04.714038400
消费者2........接收到消息:【hello, message_41】21:06:04.916192700
消费者2........接收到消息:【hello, message_43】21:06:05.116286400
消费者2........接收到消息:【hello, message_45】21:06:05.318055100
消费者2........接收到消息:【hello, message_47】21:06:05.520656400
消费者2........接收到消息:【hello, message_49】21:06:05.723106700
可以看到消费者1和消费者2竟然每人消费了25条消息:
-
消费者1很快完成了自己的25条消息
-
消费者2却在缓慢的处理自己的25条消息。
也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。导致1个消费者空闲,另一个消费者忙的不可开交。没有充分利用每一个消费者的能力,最终消息处理的耗时远远超过了1秒。这样显然是有问题的。
3.1.3.能者多劳
在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:
spring:
rabbitmq:
listener:
simple:
prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息
spring: rabbitmq: listener: simple: prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息
再次测试,发现结果如下:
消费者1接收到消息:【hello, message_0】21:12:51.659664200
消费者2........接收到消息:【hello, message_1】21:12:51.680610
消费者1接收到消息:【hello, message_2】21:12:51.703625
消费者1接收到消息:【hello, message_3】21:12:51.724330100
消费者1接收到消息:【hello, message_4】21:12:51.746651100
消费者1接收到消息:【hello, message_5】21:12:51.768401400
消费者1接收到消息:【hello, message_6】21:12:51.790511400
消费者1接收到消息:【hello, message_7】21:12:51.812559800
消费者1接收到消息:【hello, message_8】21:12:51.834500600
消费者1接收到消息:【hello, message_9】21:12:51.857438800
消费者1接收到消息:【hello, message_10】21:12:51.880379600
消费者2........接收到消息:【hello, message_11】21:12:51.899327100
消费者1接收到消息:【hello, message_12】21:12:51.922828400
消费者1接收到消息:【hello, message_13】21:12:51.945617400
消费者1接收到消息:【hello, message_14】21:12:51.968942500
消费者1接收到消息:【hello, message_15】21:12:51.992215400
消费者1接收到消息:【hello, message_16】21:12:52.013325600
消费者1接收到消息:【hello, message_17】21:12:52.035687100
消费者1接收到消息:【hello, message_18】21:12:52.058188
消费者1接收到消息:【hello, message_19】21:12:52.081208400
消费者2........接收到消息:【hello, message_20】21:12:52.103406200
消费者1接收到消息:【hello, message_21】21:12:52.123827300
消费者1接收到消息:【hello, message_22】21:12:52.146165100
消费者1接收到消息:【hello, message_23】21:12:52.168828300
消费者1接收到消息:【hello, message_24】21:12:52.191769500
消费者1接收到消息:【hello, message_25】21:12:52.214839100
消费者1接收到消息:【hello, message_26】21:12:52.238998700
消费者1接收到消息:【hello, message_27】21:12:52.259772600
消费者1接收到消息:【hello, message_28】21:12:52.284131800
消费者2........接收到消息:【hello, message_29】21:12:52.306190600
消费者1接收到消息:【hello, message_30】21:12:52.325315800
消费者1接收到消息:【hello, message_31】21:12:52.347012500
消费者1接收到消息:【hello, message_32】21:12:52.368508600
消费者1接收到消息:【hello, message_33】21:12:52.391785100
消费者1接收到消息:【hello, message_34】21:12:52.416383800
消费者1接收到消息:【hello, message_35】21:12:52.439019
消费者1接收到消息:【hello, message_36】21:12:52.461733900
消费者1接收到消息:【hello, message_37】21:12:52.485990
消费者1接收到消息:【hello, message_38】21:12:52.509219900
消费者2........接收到消息:【hello, message_39】21:12:52.523683400
消费者1接收到消息:【hello, message_40】21:12:52.547412100
消费者1接收到消息:【hello, message_41】21:12:52.571191800
消费者1接收到消息:【hello, message_42】21:12:52.593024600
消费者1接收到消息:【hello, message_43】21:12:52.616731800
消费者1接收到消息:【hello, message_44】21:12:52.640317
消费者1接收到消息:【hello, message_45】21:12:52.663111100
消费者1接收到消息:【hello, message_46】21:12:52.686727
消费者1接收到消息:【hello, message_47】21:12:52.709266500
消费者2........接收到消息:【hello, message_48】21:12:52.725884900
消费者1接收到消息:【hello, message_49】21:12:52.746299900
可以发现,由于消费者1处理速度较快,所以处理了更多的消息;消费者2处理速度较慢,只处理了6条消息。而最终总的执行耗时也在1秒左右,大大提升。
正所谓能者多劳,这样充分利用了每一个消费者的处理能力,可以有效避免消息积压问题。
3.1.3.总结
Work模型的使用:
-
多个消费者绑定到一个队列,同一条消息只会被一个消费者处理
-
通过设置prefetch来控制消费者预取的消息数量
3.2.交换机类型
举个栗子:一个支付功能,支付成功以后,我们要发消息出去,让多个微服务监听。订单服务要修改订单状态;通知服务要给用户发通知;积分服务要给用户加积分... 如果是直接发消息到队列,那么这个消息被一个人处理完就没了!相当于只有一个服务接收到了消息。
因此引入了交换机!
在之前的两个测试案例中,都没有交换机,生产者直接发送消息到队列。而一旦引入交换机,消息发送的模式会有很大变化:
可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:
-
Publisher:生产者,不再发送消息到队列中,而是发给交换机
-
Exchange:交换机,一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。
-
Queue:消息队列也与以前一样,接收消息、缓存消息。不过队列一定要与交换机绑定。
-
Consumer:消费者,与以前一样,订阅队列,没有变化
Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!
交换机的类型有四种:
-
Fanout:广播,将消息交给所有绑定到交换机的队列。我们最早在控制台使用的正是Fanout交换机
-
Direct:订阅,基于RoutingKey(路由key)发送给订阅了消息的队列
-
Topic:通配符订阅,与Direct类似,只不过RoutingKey可以使用通配符
-
Headers:头匹配,基于MQ的消息头匹配,用的较少。
3.3.Fanout交换机
在广播模式下,消息发送流程是这样的:
-
1) 可以有多个队列
-
2) 每个队列都要绑定到Exchange(交换机)
-
3) 生产者发送的消息,只能发送到交换机
-
4) 交换机把消息发送给绑定过的所有队列
-
5) 订阅队列的消费者都能拿到消息
交换机的作用是什么?
-
接收publisher发送的消息
-
将消息按照规则路由到与之绑定的队列
-
不能缓存消息,路由失败,消息丢失
-
FanoutExchange的会将消息路由到每个绑定的队列
3.4.Direct交换机
在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。
在Direct模型下:
-
队列与交换机的绑定,不能是任意绑定了,而是要指定一个
RoutingKey
(路由key) -
消息的发送方在 向 Exchange发送消息时,也必须指定消息的
RoutingKey
。 -
Exchange不再把消息交给每一个绑定的队列,而是根据消息的
Routing Key
进行判断,只有队列的Routingkey
与消息的Routing key
完全一致,才会接收到消息
Direct交换机与Fanout交换机的差异
-
Fanout交换机将消息路由给每一个与之绑定的队列
-
Direct交换机根据RoutingKey判断路由给哪个队列
-
如果多个队列具有相同的RoutingKey,则与Fanout功能类似
3.5.Topic交换机
Topic
类型的Exchange
与Direct
相比,都是可以根据RoutingKey
把消息路由到不同的队列。
只不过Topic
类型Exchange
可以让队列在绑定BindingKey
的时候使用通配符!
BindingKey
一般都是有一个或多个单词组成,多个单词之间以.
分割,例如: item.insert
通配符规则:
-
#
:匹配一个或多个词 -
*
:匹配不多不少恰好1个词
举例:
-
item.#
:能够匹配item.spu.insert
或者item.spu
-
item.*
:只能匹配item.spu
图示:
假如此时publisher发送的消息使用的RoutingKey
共有四种:
-
china.news
代表有中国的新闻消息; -
china.weather
代表中国的天气消息; -
japan.news
则代表日本新闻 -
japan.weather
代表日本的天气消息;
解释:
-
topic.queue1
:绑定的是china.#
,凡是以china.
开头的routing key
都会被匹配到,包括:-
china.news
-
china.weather
-
-
topic.queue2
:绑定的是#.news
,凡是以.news
结尾的routing key
都会被匹配。包括:-
china.news
-
japan.news
-
Direct交换机与Topic交换机的差异?
-
Topic交换机接收的消息RoutingKey必须是多个单词,以
.
分割 -
Topic交换机与队列绑定时的bindingKey可以指定通配符
-
#
:代表0个或多个词 -
*
:代表1个词
3.6.基于注解声明
基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。
例如,我们同样声明Direct模式的交换机和队列:
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "direct.queue1"),
exchange = @Exchange(name = "hmall.direct", type = ExchangeTypes.DIRECT),
key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){
System.out.println("消费者1接收到direct.queue1的消息:【" + msg + "】");
}
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "direct.queue2"),
exchange = @Exchange(name = "hmall.direct", type = ExchangeTypes.DIRECT),
key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){
System.out.println("消费者2接收到direct.queue2的消息:【" + msg + "】");
}
打开RabbitMQ就能看到了
是不是简单多了。
再试试Topic模式:
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "topic.queue1"),
exchange = @Exchange(name = "hmall.topic", type = ExchangeTypes.TOPIC),
key = "china.#"
))
public void listenTopicQueue1(String msg){
System.out.println("消费者1接收到topic.queue1的消息:【" + msg + "】");
}
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "topic.queue2"),
exchange = @Exchange(name = "hmall.topic", type = ExchangeTypes.TOPIC),
key = "#.news"
))
public void listenTopicQueue2(String msg){
System.out.println("消费者2接收到topic.queue2的消息:【" + msg + "】");
}
3.7.消息转换器
Spring的消息发送代码接收的消息体是一个Object:
而在数据传输时,它会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。
只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:
-
数据体积过大
-
有安全漏洞
-
可读性差
我们来测试一下。
3.7.1.测试默认转换器
1)创建测试队列
首先,我们在consumer服务中声明一个新的配置类:
利用@Bean的方式创建一个队列,
具体代码:
package com.itheima.consumer.config;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class MessageConfig {
@Bean
public Queue objectQueue() {
return new Queue("object.queue");
}
}
注意,这里我们先不要给这个队列添加消费者,我们要查看消息体的格式。
重启consumer服务以后,该队列就会被自动创建出来了:
2)发送消息
我们在publisher模块的SpringAmqpTest中新增一个消息发送的代码,发送一个Map对象:
@Test
public void testSendMap() throws InterruptedException {
// 准备消息
Map<String,Object> msg = new HashMap<>();
msg.put("name", "柳岩");
msg.put("age", 21);
// 发送消息
rabbitTemplate.convertAndSend("object.queue", msg);
}
发送消息后查看控制台:
可以看到消息格式非常不友好。
3.7.2.配置JSON转换器
显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。
在publisher
和consumer
两个服务中都引入依赖:
<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-xml</artifactId>
<version>2.9.10</version>
</dependency>
注意,如果项目中引入了spring-boot-starter-web
依赖,则无需再次引入Jackson
依赖。
配置消息转换器,在publisher
和consumer
两个服务的启动类中添加一个Bean即可:
@Bean
public MessageConverter messageConverter(){
// 1.定义消息转换器
Jackson2JsonMessageConverter jackson2JsonMessageConverter = new Jackson2JsonMessageConverter();
// 2.配置自动创建消息id,用于识别不同消息,也可以在业务中基于ID判断是否是重复消息
jackson2JsonMessageConverter.setCreateMessageIds(true);
return jackson2JsonMessageConverter;
}
消息转换器中添加的messageId可以便于我们将来做幂等性判断。
此时,我们到MQ控制台删除object.queue
中的旧的消息。然后再次执行刚才的消息发送的代码,到MQ的控制台查看消息结构:
3.7.3.消费者接收Object
我们在consumer服务中定义一个新的消费者,publisher是用Map发送,那么消费者也一定要用Map接收,格式如下:
@RabbitListener(queues = "object.queue")
public void listenSimpleQueueMessage(Map<String, Object> msg) throws InterruptedException {
System.out.println("消费者接收到object.queue消息:【" + msg + "】");
}