消息队列RabbitMQ入门学习

 目录

1.初识MQ

1.1.同步调用

1.2.异步调用

1.3.技术选型

2.RabbitMQ

2.1.收发消息

2.1.1.交换机

2.1.2.队列

2.1.3.绑定关系

2.1.4.发送消息

3.SpringAMQP

3.1WorkQueues模型

3.1.1消息接收

3.1.2测试

3.1.3.能者多劳

3.1.3.总结

3.2.交换机类型

3.3.Fanout交换机

3.4.Direct交换机

3.5.Topic交换机

3.6.基于注解声明

3.7.消息转换器

3.7.1.测试默认转换器

3.7.2.配置JSON转换器

3.7.3.消费者接收Object


微服务一旦拆分,必然涉及到服务之间的相互调用,目前我们服务之间调用采用的都是基于OpenFeign的调用。这种调用中,调用者发起请求后需要等待服务提供者执行业务返回结果后,才能继续执行后面的业务。也就是说调用者在调用过程中处于阻塞状态,因此我们成这种调用方式为同步调用,也可以叫同步通讯。但在很多场景下,我们可能需要采用异步通讯的方式,为什么呢?

我们先来看看什么是同步通讯和异步通讯。如图:

解读:

  • 同步通讯:就如同打视频电话,双方的交互都是实时的。因此同一时刻你只能跟一个人打视频电话。

  • 异步通讯:就如同发微信聊天,双方的交互不是实时的,你不需要立刻给对方回应。因此你可以多线操作,同时跟多人聊天。

实际开发中也有类似场景:

如图:用户登录,实际开发中还要经过风控、短信等微服务,如果是同步通讯。信息就得一个一个微服务的传递,效率很慢。等所有信息都返回了,用户已经等了很长时间了。

而异步通讯就类似于短信群发:

用户登录业务只需要把信息传到MQ当中,然后由MQ群发消息给各个微服务。各个微服务监听MQ的消息,收到信息以后就去做相应业务,并行执行,效率大大提高!

两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发微信可以同时与多个人收发微信,但是往往响应会有延迟。

所以,如果我们的业务需要实时得到服务提供方的响应,则应该选择同步通讯(同步调用)。而如果我们追求更高的效率,并且不需要实时响应,则应该选择异步通讯(异步调用)。

同步调用的方式我们已经学过了,之前的OpenFeign调用就是。但是:

  • 异步调用又该如何实现?

  • 哪些业务适合用异步调用来实现呢?

通过今天的学习你就能明白这些问题了。

1.初识MQ

1.1.同步调用

之前说过,我们现在基于OpenFeign的调用都属于是同步调用,那么这种方式存在哪些问题呢?

举个例子,我们以昨天留给大家作为作业的余额支付功能为例来分析,首先看下整个流程:

目前我们采用的是基于OpenFeign的同步调用,也就是说业务执行流程是这样的:

  • 支付服务需要先调用用户服务完成余额扣减

  • 然后支付服务自己要更新支付流水单的状态

  • 然后支付服务调用交易服务,更新业务订单状态为已支付

三个步骤依次执行。

这其中就存在3个问题:

第一拓展性差

我们目前的业务相对简单,但是随着业务规模扩大,产品的功能也在不断完善。

在大多数电商业务中,用户支付成功后都会以短信或者其它方式通知用户,告知支付成功。假如后期产品经理提出这样新的需求,你怎么办?是不是要在上述业务中再加入通知用户的业务?

某些电商项目中,还会有积分或金币的概念。假如产品经理提出需求,用户支付成功后,给用户以积分奖励或者返还金币,你怎么办?是不是要在上述业务中再加入积分业务、返还金币业务?

。。。

最终你的支付业务会越来越臃肿:

也就是说每次有新的需求,现有支付逻辑都要跟着变化,代码经常变动,不符合开闭原则,拓展性不好。

第二性能下降

由于我们采用了同步调用,调用者需要等待服务提供者执行完返回结果后,才能继续向下执行,也就是说每次远程调用,调用者都是阻塞等待状态。最终整个业务的响应时长就是每次远程调用的执行时长之和:

暂时无法在飞书文档外展示此内容

假如每个微服务的执行时长都是50ms,则最终整个业务的耗时可能高达300ms,性能太差了。

第三,级联失败

由于我们是基于OpenFeign调用交易服务、通知服务。当交易服务、通知服务出现故障时,整个事务都会回滚,交易失败。

这其实就是同步调用的级联失败问题。

但是大家思考一下,我们假设用户余额充足,扣款已经成功,此时我们应该确保支付流水单更新为已支付,确保交易成功。毕竟收到手里的钱没道理再退回去吧。

因此,这里不能因为短信通知、更新订单状态失败而回滚整个事务。

优点:但不可否认的是,,同步调用的时效性强。比如上面支付业务,必须同步调用第一个用户服务,先扣减金额,立即得到返回结果,才能进行下一步!如果这里用异步调用的话,就会出现问题:我都还没扣减金额,支付就完成了,我怎么知道支付有没有成功?

因此,这里第一个用户服务采用同步调用,其他的服务采用异步调用。支付业务一进来,等用户扣减完金额,支付业务就可以结束了。剩下的业务等异步调用慢慢执行!

综上,同步调用的方式存在下列问题:

  • 拓展性差

  • 性能下降

  • 级联失败

而要解决这些问题,我们就必须用异步调用的方式来代替同步调用

1.2.异步调用

异步调用方式其实就是基于消息通知的方式,一般包含三个角色:

  • 消息发送者:投递消息的人,就是原来的调用方

  • 消息Broker:管理、暂存、转发消息,你可以把它理解成微信服务器

  • 消息接收者:接收和处理消息的人,就是原来的服务提供方

        在异步调用中,发送者不再直接同步调用接收者的业务接口,而是发送一条消息投递给消息Broker。然后接收者根据自己的需求从消息Broker那里订阅消息。每当发送方发送消息后,接受者都能获取消息并处理。

这样,发送消息的人和接收消息的人就完全解耦了。

还是以余额支付业务为例:

除了扣减余额、更新支付流水单状态以外,其它调用逻辑全部取消。而是改为发送一条消息到Broker。而相关的微服务都可以订阅消息通知,一旦消息到达Broker,则会分发给每一个订阅了的微服务,处理各自的业务。

假如产品经理提出了新的需求,比如要在支付成功后更新用户积分。支付代码完全不用变更,而仅仅是让积分服务也订阅监听消息即可:

不管后期增加了多少消息订阅者,作为支付服务来讲,执行问扣减余额、更新支付流水状态后,发送消息即可。业务耗时仅仅是这三部分业务耗时,仅仅100ms,大大提高了业务性能。

另外,不管是交易服务、通知服务,还是积分服务,他们的业务与支付关联度低。现在采用了异步调用,解除了耦合,他们即便执行过程中出现了故障,也不会影响到支付服务。

综上,异步调用的优势包括:

  • 耦合度更低

  • 性能更好

  • 业务拓展性强

  • 故障隔离,避免级联失败

当然,异步通信也并非完美无缺,它存在下列缺点:

  • 完全依赖于Broker(消息代理)的可靠性、安全性和性能

  • 不能立即得到结果,时效性差

  • 不确定下游业务是否执行成功

  • 架构复杂,后期维护和调试麻烦

那么什么样的场景下适合用异步调用呢?

1.对于对方的执行结果不关心

例:订单状态修改,就算是这次执行失败了,没有修改订单状态,但可以重复执行,最终有一天能够执行成功。

反例:查询逻辑,这种必须得到查询结果,所以不能用异步调用。

2.对性能要求较高

例:调用链很长,如果用同步调用,耗时太长。

1.3.技术选型

消息Broker,目前常见的实现方案就是消息队列(MessageQueue),简称为MQ.

目比较常见的MQ实现:

  • ActiveMQ

  • RabbitMQ

  • RocketMQ

  • Kafka

几种常见MQ的对比:

RabbitMQActiveMQRocketMQKafka
公司/社区RabbitApache阿里Apache
开发语言ErlangJavaJavaScala&Java
协议支持AMQP,XMPP,SMTP,STOMPOpenWire,STOMP,REST,XMPP,AMQP自定义协议自定义协议
可用性一般
单机吞吐量一般非常高
消息延迟微秒级毫秒级毫秒级毫秒以内
消息可靠性一般一般

追求可用性:Kafka、 RocketMQ 、RabbitMQ

追求可靠性:RabbitMQ、RocketMQ

追求吞吐能力:RocketMQ、Kafka

追求消息低延迟:RabbitMQ、Kafka

据统计,目前国内消息队列使用最多的还是RabbitMQ,再加上其各方面都比较均衡,稳定性也好,因此选择RabbitMQ来学习。

2.RabbitMQ

RabbitMQ对应的架构如图:

其中包含几个概念:

  • publisher:生产者,也就是发送消息的一方

  • consumer:消费者,也就是消费消息的一方

  • queue:队列,存储消息。生产者投递的消息会暂存在消息队列中,等待消费者处理

  • exchange:交换机,是负责消息路由 (可以路由给一个队列,也可以路由给所有队列,取决于交换机配置),没有存储消息的能力。生产者发送的消息由交换机决定投递到哪个队列。

  • virtual host:虚拟主机,起到数据隔离的作用。每个虚拟主机相互独立,有各自的exchange、queue

2.1.收发消息

2.1.1.交换机

我们打开Exchanges选项卡,可以看到已经存在很多交换机:

我们点击任意交换机,即可进入交换机详情页面。仍然会利用控制台中的publish message 发送一条消息:

这里是由控制台模拟了生产者发送的消息。由于没有消费者存在,最终消息丢失了,这样说明交换机没有存储消息的能力。

2.1.2.队列

我们打开Queues选项卡,新建一个队列:

命名为hello.queue1

再以相同的方式,创建一个队列,密码为hello.queue2,最终队列列表如下:

此时,我们再次向amq.fanout交换机发送一条消息。会发现消息依然没有到达队列!!

怎么回事呢?

发送到交换机的消息,只会路由到与其绑定的队列,因此仅仅创建队列是不够的,我们还需要将其与交换机绑定。

2.1.3.绑定关系

点击Exchanges选项卡,点击amq.fanout交换机,进入交换机详情页,然后点击Bindings菜单,在表单中填写要绑定的队列名称:

相同的方式,将hello.queue2也绑定到改交换机。

最终,绑定结果如下:

2.1.4.发送消息

再次回到exchange页面,找到刚刚绑定的amq.fanout,点击进入详情页,再次发送一条消息:

回到Queues页面,可以发现hello.queue中已经有一条消息了:

点击队列名称,进入详情页,查看队列详情,这次我们点击get message:

可以看到消息到达队列了:

这个时候如果有消费者监听了MQ的hello.queue1hello.queue2队列,自然就能接收到消息了。

3.SpringAMQP

将来我们开发业务功能的时候,肯定不会在控制台收发消息,而是应该基于编程的方式。由于RabbitMQ采用了AMQP协议,因此它具备跨语言的特性。任何语言只要遵循AMQP协议收发消息,都可以与RabbitMQ交互。并且RabbitMQ官方也提供了各种不同语言的客户端。

但是,RabbitMQ官方提供的Java客户端编码相对复杂,一般生产环境下我们更多会结合Spring来使用。而Spring的官方刚好基于RabbitMQ提供了这样一套消息收发的模板工具:SpringAMQP。并且还基于SpringBoot对其实现了自动装配,使用起来非常方便。

SpringAmqp的官方地址:

https://spring.io/projects/spring-amqp

SpringAMQP提供了三个功能:

  • 自动声明队列、交换机及其绑定关系

  • 基于注解的监听器模式,异步接收消息

  • 封装了RabbitTemplate工具,用于发送消息

3.1WorkQueues模型

Work queues,任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息

当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。这就是消息堆积问题。

当我们碰到消息堆积问题时,我们应该加快消费者的消息处理速度,那怎么加快消息处理速度呢?我们可以加多个消费者!

此时就可以使用work 模型,多个消费者共同处理消息处理,消息处理的速度就能大大提高了。

注:每个消息只能被一个消费者处理。

3.1.1消息接收

要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:

@RabbitListener(queues = "work.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {
    System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());
    Thread.sleep(20);
}

@RabbitListener(queues = "work.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {
    System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());
    Thread.sleep(200);
}

注意到这两消费者,都设置了Thead.sleep,模拟任务耗时:

  • 消费者1 sleep了20毫秒,相当于每秒钟处理50个消息

  • 消费者2 sleep了200毫秒,相当于每秒处理5个消息

3.1.2测试

启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。

最终结果如下:

消费者1接收到消息:【hello, message_0】21:06:00.869555300
消费者2........接收到消息:【hello, message_1】21:06:00.884518
消费者1接收到消息:【hello, message_2】21:06:00.907454400
消费者1接收到消息:【hello, message_4】21:06:00.953332100
消费者1接收到消息:【hello, message_6】21:06:00.997867300
消费者1接收到消息:【hello, message_8】21:06:01.042178700
消费者2........接收到消息:【hello, message_3】21:06:01.086478800
消费者1接收到消息:【hello, message_10】21:06:01.087476600
消费者1接收到消息:【hello, message_12】21:06:01.132578300
消费者1接收到消息:【hello, message_14】21:06:01.175851200
消费者1接收到消息:【hello, message_16】21:06:01.218533400
消费者1接收到消息:【hello, message_18】21:06:01.261322900
消费者2........接收到消息:【hello, message_5】21:06:01.287003700
消费者1接收到消息:【hello, message_20】21:06:01.304412400
消费者1接收到消息:【hello, message_22】21:06:01.349950100
消费者1接收到消息:【hello, message_24】21:06:01.394533900
消费者1接收到消息:【hello, message_26】21:06:01.439876500
消费者1接收到消息:【hello, message_28】21:06:01.482937800
消费者2........接收到消息:【hello, message_7】21:06:01.488977100
消费者1接收到消息:【hello, message_30】21:06:01.526409300
消费者1接收到消息:【hello, message_32】21:06:01.572148
消费者1接收到消息:【hello, message_34】21:06:01.618264800
消费者1接收到消息:【hello, message_36】21:06:01.660780600
消费者2........接收到消息:【hello, message_9】21:06:01.689189300
消费者1接收到消息:【hello, message_38】21:06:01.705261
消费者1接收到消息:【hello, message_40】21:06:01.746927300
消费者1接收到消息:【hello, message_42】21:06:01.789835
消费者1接收到消息:【hello, message_44】21:06:01.834393100
消费者1接收到消息:【hello, message_46】21:06:01.875312100
消费者2........接收到消息:【hello, message_11】21:06:01.889969500
消费者1接收到消息:【hello, message_48】21:06:01.920702500
消费者2........接收到消息:【hello, message_13】21:06:02.090725900
消费者2........接收到消息:【hello, message_15】21:06:02.293060600
消费者2........接收到消息:【hello, message_17】21:06:02.493748
消费者2........接收到消息:【hello, message_19】21:06:02.696635100
消费者2........接收到消息:【hello, message_21】21:06:02.896809700
消费者2........接收到消息:【hello, message_23】21:06:03.099533400
消费者2........接收到消息:【hello, message_25】21:06:03.301446400
消费者2........接收到消息:【hello, message_27】21:06:03.504999100
消费者2........接收到消息:【hello, message_29】21:06:03.705702500
消费者2........接收到消息:【hello, message_31】21:06:03.906601200
消费者2........接收到消息:【hello, message_33】21:06:04.108118500
消费者2........接收到消息:【hello, message_35】21:06:04.308945400
消费者2........接收到消息:【hello, message_37】21:06:04.511547700
消费者2........接收到消息:【hello, message_39】21:06:04.714038400
消费者2........接收到消息:【hello, message_41】21:06:04.916192700
消费者2........接收到消息:【hello, message_43】21:06:05.116286400
消费者2........接收到消息:【hello, message_45】21:06:05.318055100
消费者2........接收到消息:【hello, message_47】21:06:05.520656400
消费者2........接收到消息:【hello, message_49】21:06:05.723106700
可以看到消费者1和消费者2竟然每人消费了25条消息:
  • 消费者1很快完成了自己的25条消息

  • 消费者2却在缓慢的处理自己的25条消息。

也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。导致1个消费者空闲,另一个消费者忙的不可开交。没有充分利用每一个消费者的能力,最终消息处理的耗时远远超过了1秒。这样显然是有问题的。

3.1.3.能者多劳

在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:

spring:
  rabbitmq:
    listener:
      simple:
        prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息

spring: rabbitmq: listener: simple: prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息

再次测试,发现结果如下:

消费者1接收到消息:【hello, message_0】21:12:51.659664200
消费者2........接收到消息:【hello, message_1】21:12:51.680610
消费者1接收到消息:【hello, message_2】21:12:51.703625
消费者1接收到消息:【hello, message_3】21:12:51.724330100
消费者1接收到消息:【hello, message_4】21:12:51.746651100
消费者1接收到消息:【hello, message_5】21:12:51.768401400
消费者1接收到消息:【hello, message_6】21:12:51.790511400
消费者1接收到消息:【hello, message_7】21:12:51.812559800
消费者1接收到消息:【hello, message_8】21:12:51.834500600
消费者1接收到消息:【hello, message_9】21:12:51.857438800
消费者1接收到消息:【hello, message_10】21:12:51.880379600
消费者2........接收到消息:【hello, message_11】21:12:51.899327100
消费者1接收到消息:【hello, message_12】21:12:51.922828400
消费者1接收到消息:【hello, message_13】21:12:51.945617400
消费者1接收到消息:【hello, message_14】21:12:51.968942500
消费者1接收到消息:【hello, message_15】21:12:51.992215400
消费者1接收到消息:【hello, message_16】21:12:52.013325600
消费者1接收到消息:【hello, message_17】21:12:52.035687100
消费者1接收到消息:【hello, message_18】21:12:52.058188
消费者1接收到消息:【hello, message_19】21:12:52.081208400
消费者2........接收到消息:【hello, message_20】21:12:52.103406200
消费者1接收到消息:【hello, message_21】21:12:52.123827300
消费者1接收到消息:【hello, message_22】21:12:52.146165100
消费者1接收到消息:【hello, message_23】21:12:52.168828300
消费者1接收到消息:【hello, message_24】21:12:52.191769500
消费者1接收到消息:【hello, message_25】21:12:52.214839100
消费者1接收到消息:【hello, message_26】21:12:52.238998700
消费者1接收到消息:【hello, message_27】21:12:52.259772600
消费者1接收到消息:【hello, message_28】21:12:52.284131800
消费者2........接收到消息:【hello, message_29】21:12:52.306190600
消费者1接收到消息:【hello, message_30】21:12:52.325315800
消费者1接收到消息:【hello, message_31】21:12:52.347012500
消费者1接收到消息:【hello, message_32】21:12:52.368508600
消费者1接收到消息:【hello, message_33】21:12:52.391785100
消费者1接收到消息:【hello, message_34】21:12:52.416383800
消费者1接收到消息:【hello, message_35】21:12:52.439019
消费者1接收到消息:【hello, message_36】21:12:52.461733900
消费者1接收到消息:【hello, message_37】21:12:52.485990
消费者1接收到消息:【hello, message_38】21:12:52.509219900
消费者2........接收到消息:【hello, message_39】21:12:52.523683400
消费者1接收到消息:【hello, message_40】21:12:52.547412100
消费者1接收到消息:【hello, message_41】21:12:52.571191800
消费者1接收到消息:【hello, message_42】21:12:52.593024600
消费者1接收到消息:【hello, message_43】21:12:52.616731800
消费者1接收到消息:【hello, message_44】21:12:52.640317
消费者1接收到消息:【hello, message_45】21:12:52.663111100
消费者1接收到消息:【hello, message_46】21:12:52.686727
消费者1接收到消息:【hello, message_47】21:12:52.709266500
消费者2........接收到消息:【hello, message_48】21:12:52.725884900
消费者1接收到消息:【hello, message_49】21:12:52.746299900

可以发现,由于消费者1处理速度较快,所以处理了更多的消息;消费者2处理速度较慢,只处理了6条消息。而最终总的执行耗时也在1秒左右,大大提升。

正所谓能者多劳,这样充分利用了每一个消费者的处理能力,可以有效避免消息积压问题。

3.1.3.总结

Work模型的使用:

  • 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理

  • 通过设置prefetch来控制消费者预取的消息数量

3.2.交换机类型

        举个栗子:一个支付功能,支付成功以后,我们要发消息出去,让多个微服务监听。订单服务要修改订单状态;通知服务要给用户发通知;积分服务要给用户加积分...  如果是直接发消息到队列,那么这个消息被一个人处理完就没了!相当于只有一个服务接收到了消息。

        因此引入了交换机!    

在之前的两个测试案例中,都没有交换机,生产者直接发送消息到队列。而一旦引入交换机,消息发送的模式会有很大变化:

可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:

  • Publisher:生产者,不再发送消息到队列中,而是发给交换机

  • Exchange:交换机,一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。

  • Queue:消息队列也与以前一样,接收消息、缓存消息。不过队列一定要与交换机绑定。

  • Consumer:消费者,与以前一样,订阅队列,没有变化

Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!

交换机的类型有四种:

  • Fanout:广播,将消息交给所有绑定到交换机的队列。我们最早在控制台使用的正是Fanout交换机

  • Direct:订阅,基于RoutingKey(路由key)发送给订阅了消息的队列

  • Topic:通配符订阅,与Direct类似,只不过RoutingKey可以使用通配符

  • Headers:头匹配,基于MQ的消息头匹配,用的较少。

3.3.Fanout交换机

在广播模式下,消息发送流程是这样的:

  • 1) 可以有多个队列

  • 2) 每个队列都要绑定到Exchange(交换机)

  • 3) 生产者发送的消息,只能发送到交换机

  • 4) 交换机把消息发送给绑定过的所有队列

  • 5) 订阅队列的消费者都能拿到消息

交换机的作用是什么?

  • 接收publisher发送的消息

  • 将消息按照规则路由到与之绑定的队列

  • 不能缓存消息,路由失败,消息丢失

  • FanoutExchange的会将消息路由到每个绑定的队列

3.4.Direct交换机

在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。

在Direct模型下:

  • 队列与交换机的绑定,不能是任意绑定了,而是要指定一个RoutingKey(路由key)

  • 消息的发送方在 向 Exchange发送消息时,也必须指定消息的 RoutingKey

  • Exchange不再把消息交给每一个绑定的队列,而是根据消息的Routing Key进行判断,只有队列的Routingkey与消息的 Routing key完全一致,才会接收到消息

Direct交换机与Fanout交换机的差异

  • Fanout交换机将消息路由给每一个与之绑定的队列

  • Direct交换机根据RoutingKey判断路由给哪个队列

  • 如果多个队列具有相同的RoutingKey,则与Fanout功能类似

3.5.Topic交换机

Topic类型的ExchangeDirect相比,都是可以根据RoutingKey把消息路由到不同的队列。

只不过Topic类型Exchange可以让队列在绑定BindingKey 的时候使用通配符!

BindingKey 一般都是有一个或多个单词组成,多个单词之间以.分割,例如: item.insert

通配符规则:

  • #:匹配一个或多个词

  • *:匹配不多不少恰好1个词

举例:

  • item.#:能够匹配item.spu.insert 或者 item.spu

  • item.*:只能匹配item.spu

图示:

假如此时publisher发送的消息使用的RoutingKey共有四种:

  • china.news 代表有中国的新闻消息;

  • china.weather 代表中国的天气消息;

  • japan.news 则代表日本新闻

  • japan.weather 代表日本的天气消息;

解释:

  • topic.queue1:绑定的是china.# ,凡是以 china.开头的routing key 都会被匹配到,包括:

    • china.news

    • china.weather

  • topic.queue2:绑定的是#.news ,凡是以 .news结尾的 routing key 都会被匹配。包括:

    • china.news

    • japan.news

Direct交换机与Topic交换机的差异?

  • Topic交换机接收的消息RoutingKey必须是多个单词,以 . 分割

  • Topic交换机与队列绑定时的bindingKey可以指定通配符

  • #:代表0个或多个词

  • *:代表1个词

3.6.基于注解声明

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。

例如,我们同样声明Direct模式的交换机和队列:

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "direct.queue1"),
    exchange = @Exchange(name = "hmall.direct", type = ExchangeTypes.DIRECT),
    key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){
    System.out.println("消费者1接收到direct.queue1的消息:【" + msg + "】");
}

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "direct.queue2"),
    exchange = @Exchange(name = "hmall.direct", type = ExchangeTypes.DIRECT),
    key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){
    System.out.println("消费者2接收到direct.queue2的消息:【" + msg + "】");
}

打开RabbitMQ就能看到了

是不是简单多了。

再试试Topic模式:

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "topic.queue1"),
    exchange = @Exchange(name = "hmall.topic", type = ExchangeTypes.TOPIC),
    key = "china.#"
))
public void listenTopicQueue1(String msg){
    System.out.println("消费者1接收到topic.queue1的消息:【" + msg + "】");
}

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "topic.queue2"),
    exchange = @Exchange(name = "hmall.topic", type = ExchangeTypes.TOPIC),
    key = "#.news"
))
public void listenTopicQueue2(String msg){
    System.out.println("消费者2接收到topic.queue2的消息:【" + msg + "】");
}

3.7.消息转换器

Spring的消息发送代码接收的消息体是一个Object:

而在数据传输时,它会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。

只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:

  • 数据体积过大

  • 有安全漏洞

  • 可读性差

我们来测试一下。

3.7.1.测试默认转换器

1)创建测试队列

首先,我们在consumer服务中声明一个新的配置类:

利用@Bean的方式创建一个队列,

具体代码:

package com.itheima.consumer.config;

import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class MessageConfig {

    @Bean
    public Queue objectQueue() {
        return new Queue("object.queue");
    }
}

注意,这里我们先不要给这个队列添加消费者,我们要查看消息体的格式。

重启consumer服务以后,该队列就会被自动创建出来了:

2)发送消息

我们在publisher模块的SpringAmqpTest中新增一个消息发送的代码,发送一个Map对象:

@Test
public void testSendMap() throws InterruptedException {
    // 准备消息
    Map<String,Object> msg = new HashMap<>();
    msg.put("name", "柳岩");
    msg.put("age", 21);
    // 发送消息
    rabbitTemplate.convertAndSend("object.queue", msg);
}

发送消息后查看控制台:

可以看到消息格式非常不友好。

3.7.2.配置JSON转换器

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

publisherconsumer两个服务中都引入依赖:

<dependency>
    <groupId>com.fasterxml.jackson.dataformat</groupId>
    <artifactId>jackson-dataformat-xml</artifactId>
    <version>2.9.10</version>
</dependency>

注意,如果项目中引入了spring-boot-starter-web依赖,则无需再次引入Jackson依赖。

配置消息转换器,在publisherconsumer两个服务的启动类中添加一个Bean即可:

@Bean
public MessageConverter messageConverter(){
    // 1.定义消息转换器
    Jackson2JsonMessageConverter jackson2JsonMessageConverter = new Jackson2JsonMessageConverter();
    // 2.配置自动创建消息id,用于识别不同消息,也可以在业务中基于ID判断是否是重复消息
    jackson2JsonMessageConverter.setCreateMessageIds(true);
    return jackson2JsonMessageConverter;
}

消息转换器中添加的messageId可以便于我们将来做幂等性判断。

此时,我们到MQ控制台删除object.queue中的旧的消息。然后再次执行刚才的消息发送的代码,到MQ的控制台查看消息结构:

3.7.3.消费者接收Object

我们在consumer服务中定义一个新的消费者,publisher是用Map发送,那么消费者也一定要用Map接收,格式如下:

@RabbitListener(queues = "object.queue")
public void listenSimpleQueueMessage(Map<String, Object> msg) throws InterruptedException {
    System.out.println("消费者接收到object.queue消息:【" + msg + "】");
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/544113.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Golang | Leetcode Golang题解之第28题找出字符串中第一个匹配项的下标

题目&#xff1a; 题解&#xff1a; func strStr(haystack, needle string) int {n, m : len(haystack), len(needle)if m 0 {return 0}pi : make([]int, m)for i, j : 1, 0; i < m; i {for j > 0 && needle[i] ! needle[j] {j pi[j-1]}if needle[i] needle[…

【微信小程序——案例——本地生活(列表页面)】

案例——本地生活&#xff08;列表页面&#xff09; 九宫格中实现导航跳转——以汽车服务为案例&#xff08;之后可以全部实现页面跳转——现在先实现一个&#xff09; 在app.json中添加新页面 修改之前的九宫格view改为navitage 效果图&#xff1a; 动态设置标题内容—…

【Java】内存可见性问题是什么?

文章目录 内存模型内存可见性解决方案volatile 内存模型 什么是JAVA 内存模型&#xff1f; Java Memory Model (JAVA 内存模型&#xff09;是描述线程之间如何通过内存(memory)来进行交互。 具体说来&#xff0c; JVM中存在一个主存区&#xff08;Main Memory或Java Heap Mem…

wpf下RTSP|RTMP播放器两种渲染模式实现

技术背景 在这篇blog之前&#xff0c;我提到了wpf下播放RTMP和RTSP渲染的两种方式&#xff0c;一种是通过控件模式&#xff0c;另外一种是直接原生RTSP、RTMP播放模块&#xff0c;回调rgb&#xff0c;然后在wpf下渲染&#xff0c;本文就两种方式做个说明。 技术实现 以大牛直…

信息系统项目管理师0051:管理基础(4信息系统管理—4.1管理方法—4.1.1管理基础)

点击查看专栏目录 文章目录 第四章 信息系统管理4.1管理方法4.1.1管理基础1.层次结构2.系统管理第四章 信息系统管理 在信息技术和数据资源要素的推动下,社会各领域已经并正在加速进入数字化的全新发展时期,基于智能、网络和大数据的新经济业态正在形成,从“数字融合”向“数…

OpenCV4.9图像金字塔

目标 在本教程中&#xff0c;您将学习如何&#xff1a; 使用 OpenCV 函数 pyrUp()和 pyrDown()对给定图像进行下采样或上采样。 理论 注意 下面的解释属于 Bradski 和 Kaehler 的 Learning OpenCV 一书。 通常&#xff0c;我们需要将图像转换为与原始图像不同的大小。为此…

CleanMyMac一键释放Mac潜力的智能助手

在数字化时代&#xff0c;我们的Mac电脑承载着日益增多的数据和文件&#xff0c;使得系统性能逐渐下降&#xff0c;运行缓慢。为了解决这个问题&#xff0c;我们需要一款能够深度清理、优化Mac性能的软件。CleanMyMac&#xff0c;作为Mac系统清理领域的佼佼者&#xff0c;凭借其…

Go语言入门|包、关键字和标识符

目录 Go语言 包文件 规则 关键字 规则 标识符 规则 预定义标识符 Go语言 Go语言是一种静态类型、编译型和并发型的编程语言&#xff0c;由Google开发。Go的源代码文件以.go为扩展名&#xff0c;文件名通常与包名保持一致。一个Go文件可以包含多个顶级声明&#xff0c;…

【opencv】示例-train_HOG.cpp 训练和测试基于支持向量机(SVM)的行人检测器

#include "opencv2/imgproc.hpp" // 包含OpenCV图像处理头文件 #include "opencv2/highgui.hpp" // 包含OpenCV高层GUI&#xff08;图形用户界面&#xff09;头文件 #include "opencv2/ml.hpp" // 包含OpenCV机器学习模块头文件 #includ…

jupyter切换不同的内核(虚拟环境)(anaconda 24.1.2)

jupyter切换不同的内核&#xff08;anaconda 24.1.2&#xff09; 主要的两条命令&#xff1a; conda install ipykernel python -m ipykernel install --user --name 环境名称 anaconda的版本号 conda --version实例&#xff1a; 一、首先可以看到已经创…

【JDBC入门学习】

JDBC简介 注意&#xff1a;1.注册驱动可以不写了 2.导入jar包时要注意点击右键添加 package com.wudreamer.jdbc;import java.sql.Connection; import java.sql.DriverManager; import java.sql.Statement;/* * jdbc 入门 * */ public class JdbcDemo {public static v…

软考中级工程师网络技术第二节网络体系结构

OSPF将路由器连接的物理网络划分为以下4种类型&#xff0c;以太网属于&#xff08;25&#xff09;&#xff0c;X.25分组交换网属于&#xff08;非广播多址网络NBMA&#xff09;。 A 点对点网络 B 广播多址网络 C 点到多点网络 D 非广播多址网络 试题答案 正确答案&#xff1a; …

SDUT lab5-2

7-2 sdut-JAVA-Credit Card Number Validation 分数 10 全屏浏览 切换布局 作者 马新娟 单位 山东理工大学 Each type of credit card begins with a prefix or range of prefixes and is of a certain length. Table 1 shows the details of two commonly used credit ca…

LeetCode-31-下一个排列问题

题目说明 实现获取下一个排列的函数&#xff0c;算法需要将给定数字序列重新排列成字典序中下一个更大的排列。 如果不存在下一个更大的排列&#xff0c;则将数字重新排列成最小的排列&#xff08;即升序排列&#xff09;。 必须原地修改&#xff0c;只允许使用额外常数空间。…

论文笔记:SmartPlay : A Benchmark for LLMs as Intelligent Agents

iclr 2024 reviewer评分 5688 引入了 SmartPlay&#xff0c;一种从 6 种不同游戏中提取的基准 衡量LLM作为智能体的能力 1 智能代理所需的能力 论文借鉴游戏设计的概念&#xff0c;确定了智能LLM代理的九项关键能力&#xff0c;并为每项能力确定了多个等级&#xff1a; 长文…

JVM虚拟机(五)强引用、软引用、弱引用、虚引用

目录 一、强引用二、软引用三、弱引用四、虚引用五、总结 引文&#xff1a; 在 Java 中一共存在 4 种引用&#xff1a;强、软、弱、虚。它们主要指的是&#xff0c;在进行垃圾回收的时候&#xff0c;对于不同的引用垃圾回收的情况是不一样的。下面我们就一起来看一下这 4 种引用…

白话微机:10.民风淳朴的MCS-51小镇(小镇方言:汇编)

1. 基本结构与周期 MCS-51系列单片机属于8位单片机用 8051单片机构成最小应用系统时&#xff0c;只要将单片机接上时钟电路和复位电路即可MCS-51单片机由CPU、存储器和I/O三部分组成CPU是指&#xff1a;运算器和控制器 “PC CPU 3BUS RAM I/O” 在执行指令过程中&#xff…

Java-Scanner类进阶+题目

Scanner进阶 接收整数数据时&#xff1a; 接收小数数据时&#xff1a; 例子&#xff1a; 可以先这样弄出scanner的框架&#xff1a; 未完待续... ...

介绍set和map容器

文章目录 1.什么是关联式容器2.什么是键值对3.树形结构的关联式容器3.1set3.1.2set的使用set的构造set的迭代器set的容量set的常用操作set的简单使用 3.2 mapmap的构造map的迭代器map的容量map的常用操作map的使用 3.3multiset3.4 multimap 在介绍set和map容器前先了解什么是关…

《GVL》论文笔记

原文链接 [2303.06378] Learning Grounded Vision-Language Representation for Versatile Understanding in Untrimmed Videos (arxiv.org) 原文笔记 What 《Learning Grounded Vision-Language Representation for Versatile Understanding in Untrimmed Videos》 全文一…