基于机器学习的人脸发型推荐算法研究与应用实现

1.摘要

    本文主要研究内容是开发一种发型推荐系统,旨在识别用户的面部形状,并根据此形状推荐最适合的发型。首先,收集具有各种面部形状的用户照片,并标记它们的脸型,如长形、圆形、椭圆形、心形或方形。接着构建一个面部分类器,以确定用户的脸型,如长形、圆形、椭圆形、心形或方形。然后,使用机器学习或深度学习技术构建一个面部分类器模型。该模型接受用户照片作为输入,并输出对应的面部形状分类结果。基于分类结果,根据面部分类器的输出结果,为每种面部形状设计一组适合的发型。最终实现的系统将推荐适合用户面部形状的发型。该系统将利用用户对不同发型的偏好和不喜欢程度进行持续更新,以提供个性化的推荐。

2. 算法研究

2.1 数据分析及数据集收集过程

        通过查阅22个网站和234位名人的信息来收集具有正确面部形状标签的图像。其中,有33位名人的面部形状在3个或更多网站中得到了一致的分类(65位在2个或更多网站中一致)。还有49位名人虽然在某些网站上的分类存在冲突,但有强烈的共识可以用于分类。最终,利用74位名人的数据进行了分析。

        面部形状特征描述

  • 心形脸形(heart-shaped face):具有宽阔的颧骨,逐渐变窄至下巴。
  • 长形脸形(long face):长而非常狭窄。
  • 椭圆形脸形(oval face):类似于长形脸,但比长形脸更丰满。
  • 圆形脸形(round face):短而宽的形状,与其他脸形明显不同。
  • 方形脸形(square-shaped face):具有强烈的下颌线。

        最终,数据集包含了约 74 名名人的约 1500 张图像,存储到DATA 文件夹中。

        基于上述收集的data数据,创建了一个包含各种特征的数据框,这些特征包括面部关键点的坐标、计算出的长度和比率,以及图像名称和分类形状。该数据框的列包括了大量的特征,如面部关键点坐标、长度、比率以及图像名称和分类形状等。接着,通过调用主要函数和第二个用于推荐目的的函数,对上述目录中的所有照片运行主要函数,从而生成了一个整洁的数据集。

data = pd.DataFrame()
data.reset_index
shape_df = pd.DataFrame(columns = ['filenum','filename','classified_shape'])
shape_array = []
def store_features_and_classification():
    filenum = -1
    sub_dir = [q for q in pathlib.Path(image_dir).iterdir() if q.is_dir()]
    start_j = 0
    end_j = len(sub_dir)

    for j in range(start_j, end_j):
        images_dir = [p for p in pathlib.Path(sub_dir[j]).iterdir() if p.is_file()]

        for p in pathlib.Path(sub_dir[j]).iterdir():
            print(p)

            shape_array= []
            if 1 == 1:
                    face_file_name = os.path.basename(p)
                    classified_face_shape = os.path.basename(os.path.dirname(p)) 
                    filenum += 1
                    make_face_df(p,filenum)
                    shape_array.append(filenum)
                    shape_array.append(face_file_name)  
                    shape_array.append(classified_face_shape)
                    shape_df.loc[filenum] = np.array(shape_array)
            
            
store_features_and_classification()  
data = pd.concat([df, shape_df], axis=1)
# Add all the faces features with shape to a DATA CSV file for model purpose.
data.to_csv('all_features.csv')

        这段代码的主要目的是创建一个数据集,其中包含了面部特征和分类形状的信息,并将其保存到一个CSV文件中以供模型使用。

2.2 模型训练过程

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, normalize
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
import matplotlib.pyplot as plt

# 导入数据
data = pd.read_csv('all_features.csv', index_col=None).drop('Unnamed: 0', axis=1).dropna()

# 准备数据
X = normalize(data.drop(['filenum', 'filename', 'classified_shape'], axis=1))
Y = data['classified_shape']

# 标准化特征
scaler = StandardScaler()
X = scaler.fit_transform(X)

# PCA降维
pca = PCA(n_components=18, svd_solver='randomized', whiten=True).fit(X)
X = pca.transform(X)

# 划分训练集和测试集
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=1200)

# MLP模型
mlp_best = MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', hidden_layer_sizes=(60, 100, 30, 100),
                         learning_rate='constant', learning_rate_init=0.01, max_iter=100, random_state=525)
mlp_best.fit(X_train, Y_train)

# KNN模型
neigh = KNeighborsClassifier(n_neighbors=5)
neigh.fit(X_train, Y_train)

# 随机森林模型
clf = RandomForestClassifier(n_estimators=100, max_depth=None, random_state=5)
clf.fit(X_train, Y_train)

# 梯度提升模型
gb_best = GradientBoostingClassifier(n_estimators=300, max_depth=5, learning_rate=0.1)
gb_best.fit(X_train, Y_train)

# LDA模型
lda = LinearDiscriminantAnalysis()
lda.fit(X_train, Y_train)

# 可视化模型比较结果
def model_graph():
    models = [mlp_best, neigh, clf, gb_best, lda]
    model_names = ['MLP', 'KNN', 'Random Forest', 'Gradient Boosting', 'LDA']
    accuracies = [model.score(X_test, Y_test) for model in models]

    plt.figure(figsize=(10, 6))
    plt.bar(model_names, accuracies, color=['blue', 'green', 'pink', 'orange', 'purple'])
    plt.xlabel('Model')
    plt.ylabel('Accuracy')
    plt.title('Comparison of Models')
    plt.show()

model_graph()

该代码的主要目的为比较不同机器学习模型在识别面部形状方面的性能,以帮助选择最佳的模型用于面部形状分类任务。功能如下:

  1. 数据预处理:首先,导入必要的库,并加载以前处理过的数据。然后,将数据进行清理,去除任何包含NaN值的行,并准备好用于模型训练的特征矩阵 X 和目标向量 Y。

  2. 标准化:使用 StandardScaler 对特征矩阵 X 进行标准化,即移除平均值并缩放到单位方差,以确保每个特征对模型的贡献大致相等。

  3. PCA降维:对标准化后的特征矩阵 X 进行主成分分析(PCA)降维,以减少特征的数量。作者选择了包含 18 个主成分的 PCA 模型,通过 fit 方法拟合 PCA 模型,并使用 transform 方法将数据转换为新的主成分空间。

  4. 模型选择与训练:作者尝试了多种监督学习模型,包括多层感知机(MLP)、K最近邻分类器(KNN)、随机森林分类器(Random Forest)、梯度提升分类器(Gradient Boosting)和线性判别分析(LDA)。对于每个模型,作者通过调整超参数和使用交叉验证选择最佳模型,并使用最佳模型在测试集上进行评估。

  5. 模型评估:评估了每个模型在测试集上的性能,并将结果可视化为条形图,展示了不同模型在识别不同面部形状上的准确率。最后,生成一个结果表格,汇总了每个模型对不同面部形状的识别准确率。实验结果如下:

3. 应用实现

        基于flask技术实现一个用于面部特征识别和发型推荐的应用程序。

         该系统包含:

  1. 上传照片功能:用户可以在页面中上传自己的照片。上传后,会显示用户的照片,并提供预测和推荐功能。

  2. 预测功能:用户可以点击“预测”按钮,对上传的照片进行预测,以推荐适合用户脸型和其他特征的发型。

        点击开始预测

输出结果为:

4. 结语

        该研究主要关注开发一种发型推荐系统,其目标是根据用户的面部形状识别最适合的发型。主要研究内容包括:
        1.数据收集和分析:收集具有各种面部形状的用户照片,并标记其脸型,如长形、圆形、椭圆形、心形或方形。构建面部分类器以确定用户的脸型,使用机器学习技术构建模型。数据集包含约74位名人的约1500张图像,并存储到CSV文件中以供模型使用。
        2.模型训练过程:导入数据,准备数据,并对特征进行标准化和降维。使用多种机器学习模型进行训练,包括MLP、KNN、随机森林、梯度提升和LDA模型。比较不同模型在面部形状分类任务上的性能,并选择最佳模型。
        3.应用实现:基于Flask技术实现一个用于面部特征识别和发型推荐的应用程序。应用程序包括一个点击开始预测的功能,输出用户的面部形状分类结果和推荐的发型。
        总的来说,该研究旨在帮助用户了解适合其脸型的最佳发型,并提供个性化的发型推荐服务。

        上述代码的运行环境为基于python3.7.0配置pandas==1.1.5 Flask==1.0.2 sklearn==0.0 scikit-learn==0.23.1 Werkzeug==0.16.0 opencv-python==4.1.0.25 numpy==1.19.5 matplotlib==3.3.4 Pillow==8.4.0 requests==2.18.4 bs4==0.0.1 beautifulsoup4==4.7.1 seaborn==0.11.0 scipy==1.5.4。

完整代码:

https://download.csdn.net/download/weixin_40651515/89136480

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/544071.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

STM32之DHT11温湿度传感器

目录 一 DHT11温湿度传感器简介 1.1 传感器特点 1.2 传感器特性 1.3 传感器引脚说明 二 测量原理及方法 2.1 典型应用电路 2.2 单线制串行简介 2.2.1 串行接口 (单线双向) 2.2.2 数据示例 2.3 通信时序 三 单片机简介 3.1 STM32F103C8T6最小系统板 四 接线说明 …

LLM-大模型演化分支树、GPT派发展阶段及训练流程图、Infini-Transformer说明

大模型是怎么演进的? Encoder Only: 对应粉色分支,即BERT派,典型模型: BERT 自编码模型(Autoencoder Model):通过重建句子来进行预训练,通常用于理解任务,如文本分类和阅…

架构师系列-搜索引擎ElasticSearch(五)- 索引设计

索引创建后,要非常谨慎,创建不好后面会出现各种问题。 索引设计的重要性 索引创建后,索引分片只能通过_split和_shrink 接口对其进行成倍的增加和缩减。 ES的数据是通过_routing分配到各个分片上的,所以本质上不推荐区改变索引的…

记录一下MySQL8版本更改密码规则

#查看当前密码策略 show variables like validate_password%;#修改密码等级为low set global validate_password.policy LOW; #注意MySQL8版本这是点,不是_#修改密码长度为6 set global validate_password.length 6;#查询我的数据库中user表host和user select host,…

【前端面试3+1】16 TCP与UDP的区别、如何清除浮动、哪些原因造成阻塞页面渲染、【相同的树】

一、TCP与UDP的区别 TCP(Transmission Control Protocol)和UDP(User Datagram Protocol)是两种常用的网络传输协议,它们有以下几点区别: 1、连接性: TCP是面向连接的协议,通信双方在…

以太网数据量大小字符串生成方法(可变单位)

0 前言 当我们想显示以太网数据量大小时,往往有个头疼的单位需要处理,单位取小了不一目了然,单位取大了精度太低。本例设计一个函数,将根据以太网数据量大小自动生成单位可变的字符串(KB、MB、GB、TB、PB)…

【大语言模型】基础:TF-IDF

TF-IDF (Term Frequency-Inverse Document Frequency) 是一种用于信息检索与文本挖掘的统计方法,用来评估一个词对于一个文件集或一个语料库中的其中一份文件的重要性。它是一种常用于文本处理和自然语言处理的权重计算技术。 原理 TF-IDF 由两部分组成&#xff1…

Qt:发出一个信号,有多少相关槽函数执行?

返回连接signal的接收者的个数。 因为信号和槽都能作为信号的接收者,同时相同的连接能被建立很多次,接收者的数量和与该信号建立连接的数量相同。 当调用该函数时,你能使用SIGNAL()宏来传递一个特定的信号: if (receivers(SIGNA…

【core analyzer】core analyzer的介绍和安装详情

目录 🌞1. core和core analyzer的基本概念 🌼1.1 coredump文件 🌼1.2 core analyzer 🌞2. core analyzer的安装详细过程 🌼2.1 方式一 简单但不推荐 🌼2.2 方式二 推荐 🌻2.2.1 安装遇到…

Servlet实现常用功能及其他方法

getParameter 获取body或url中指定的key/value值 String classIdreq.getParameter("classId"); getQueryString 获取请求的所有查询参数key,values1 String queryStringreq.getQueryString(); from表单提交 前端通过from表单提交用户名和密码 <!DOCTYPE htm…

<计算机网络自顶向下> P2P应用

纯P2P架构 没有或者极少一直运行的Server&#xff0c;Peer节点间歇上网&#xff0c;每次IP地址都可能变化任意端系统都可以直接通信利用peer的服务能力&#xff0c;可扩展性好例子&#xff1a;文件分发; 流媒体; VoIP类别:两个节点相互上载下载文件&#xff0c;互通有无&#…

Android Gradle 开发与应用 (七) : 实现打包自动复制文件插件

1. 前言 项目中遇到了一个问题 : 其中一个模块MyLibrary的assets文件夹中,需要存放很多文件(每个文件对应一个功能)。 这样导致的问题是MyLibrary打出的这个aar包体积特别大。 如果把MyLibrary严谨地拆解成若干个Module又比较费时,对于现在业务现状来说也显得没那么必要。…

Matlab隐式方程拟合【案例源码+视频教程】|隐函数拟合|非线性拟合|视频教程

专栏导读 作者简介&#xff1a;工学博士&#xff0c;高级工程师&#xff0c;专注于工业软件算法研究本文已收录于专栏&#xff1a;《复杂函数拟合案例分享》本专栏旨在提供 1.以案例的形式讲解各类复杂函数拟合的程序实现方法&#xff0c;并提供所有案例完整源码&#xff1b;2.…

day10 | 栈与队列 part-2 (Go) | 20 有效的括号、1047 删除字符串中的所有相邻重复项、150 逆波兰表达式求值

今日任务 20 有效的括号 (题目: . - 力扣&#xff08;LeetCode&#xff09;)1047 删除字符串中的所有相邻重复项 (题目: . - 力扣&#xff08;LeetCode&#xff09;)150 逆波兰表达式求值 (题目: . - 力扣&#xff08;LeetCode&#xff09;) 20 有效的括号 题目: . - 力扣&…

机器学习第34周周报VBAED

文章目录 week34 VBAED摘要Abstract一、文献阅读1. 题目2. abstract3. 网络架构3.1 序列问题阐述3.2 变分模态分解3.3 具有 BiLSTM 和双向输入注意力的编码器3.4 具有 BiLSTM 和双向时间注意力的解码器 4. 文献解读4.1 Introduction4.2 创新点4.3 实验过程4.3.1 数据集数据预处…

AI大模型之idea通义灵码智能AI插件安装方式

问题描述 主要讲述如何进行开发工具 idea中如何进行通义灵码的插件的安装解决方案 直接在idea的plugin市场中安装 下载插件之后进行安装 见资源

【QT+QGIS跨平台编译】161:【qgispython跨平台编译】—【qgis_python.h生成】

点击查看专栏目录 文章目录 一、qgis_python.h介绍二、信息分析三、qgis_python.h生成一、qgis_python.h介绍 qgis_python.h 是 QGIS(Quantum Geographic Information System)GIS 软件的一个头文件。QGIS 是一个开源的地理信息系统软件,提供了丰富的地图制图和空间分析功能。…

Google最新论文: 复杂的 Prompt 如何更好的调试?

本文介绍了Sequence Salience&#xff0c;这是一个专为调试复杂的大模型提示而设计的系统。该系统利用广泛使用的显著性方法&#xff0c;支持文本分类和单标记预测&#xff0c;并将其扩展到可处理长文本的调试系统。现有的工具往往不足以处理长文本或复杂提示的调试需求。尽管存…

ASP.NET公交车管理系统的实现与设计

摘 要 随着经济的日益增长&#xff0c;信息化时代已经到来&#xff0c;生活中各种信息趋向数字化、清晰化。公交车作为现代城市生活中一种重要的交通工具&#xff0c;其数量增多&#xff0c;车型也不再单一&#xff0c;雇用的司机增多&#xff0c;这样使得公交车公司的车辆信…

架构师系列-搜索引擎ElasticSearch(四)- 高级查询

ES查询 matchAll 脚本方式 该方式可以通过kabana、curl、elasticsearch-head&#xff08;纯前端&#xff09;去操作 # 默认情况下&#xff0c;es一次展示10条数据,通过from和size来控制分页 # 查询结果详解 GET goods/_search {"query": {"match_all":…