AI大模型探索之路-实战篇:基于CVP架构-企业级知识库实战落地

目录

前言

 一、概述

 二、本地知识库需求分析

1. 知识库场景分析

2. 知识库应用特点

3. 知识库核心功能 

三、本地知识库架构设计 

1. RAG架构分析 

2. 大模型方案选型

3. 应用技术架构选型

4. 向量数据库选型

5. 模型选型

三、本地知识库RAG评估

四、本地知识库代码落地

1. 文件解析函数

2. 定义文件内容分割函数

3. 数据库操作函数

4.定义一个对话链

5. 模型定义

6. 知识库导入更新处理

7. 对话聊天处理

8. LangSmith监控配置

五、本地知识库项目上线

1. 项目启动运行

2. 知识库导入更新

3. 聊天对话测试

4. 查看运行监控

总结


前言

在当今信息时代,企业的知识管理变得日益重要。随着人工智能技术的飞速发展,企业知识库的构建和维护已经从传统的文档存储和关键词检索演变为更加智能化、高效化的知识服务。CVP架构模式,作为一种结合了强大的语言理解和快速信息检索能力的先进框架,为企业提供了一个实现这一目标的有效途径。本文将深入探讨如何基于CVP(ChatGPT + VectorDB + Prompt)架构实现企业级知识库项目的落地,以及在实际过程中的应用特点和技术细节。


 一、概述

CVP架构模式的优势在于其将强大的语言理解与快速的信息检索能力相结合,使得AI应用在企业环境中更加高效和智能。本章将重点讲解如何利用CVP架构(RAG架构的一种实践)来实现企业级知识库项目的落地。这涉及到大模型的自然语言理解能力、向量化存储技术,以及RAG对问题的检索增强技术的综合运用,以完成整个技术方案的实施。

 二、本地知识库需求分析

1. 知识库场景分析

对于企业而言,构建一个符合自身业务需求的知识库是至关重要的。通过RAG、微调等技术手段,我们可以将通用的大模型转变为对特定行业有着深度理解的“行业专家”,从而更好地服务于企业的具体业务需求。这样的知识库基本上适用于每个公司各行各业,包括但不限于

1)市场调研知识库:收集和整理市场调研数据,包括竞争对手分析、消费者洞察、行业趋势等。这有助于企业制定更有效的市场策略。
2)人力资源知识库:存储和管理与人力资源管理相关的信息,包括员工手册、培训资料、绩效评估等。这有助于人力资源部门更好地进行人才管理和激励。
3)项目管理知识库:存储和管理与项目管理相关的信息,包括项目计划、进度跟踪、风险管理等。这有助于项目经理更好地进行项目管理和控制。
4)技术文档知识库:用于存储和管理企业的技术文档,如用户手册、产品说明书、维修指南等。这些文档对于技术人员来说是宝贵的资源,可以帮助他们快速解决问题或学习新的技术信息。
5)项目流程知识库:包含项目管理的最佳实践、流程图、模板和其他相关文档。它可以帮助团队成员理解项目的各个阶段,以及如何有效地协作和沟通。
6)招标投标知识库:集中存储与企业参与招标投标活动相关的所有信息,如招标文件、历史投标案例、市场分析报告等。这有助于企业提高投标的成功率和效率。
7)方案资料知识库:用于管理和分享企业的商业方案、市场策略和其他相关的商业情报。这可以帮助决策者制定更加明智的战略决策。
 

2. 知识库应用特点

在当今这个数据驱动的商业环境中,企业对知识库的依赖日益加深。一个高效、可靠的知识库系统是企业资产管理中不可或缺的组成部分。同时知识库包括以下关键特点:

1)数据隐私性强

企业的知识库包含了大量敏感信息和核心机密,如商业策略、客户数据、研究结果等。它们不仅是公司资产的一部分,更是竞争优势的重要来源。因此,维护数据的隐私性和安全性是知识库系统的头等大事。

2)准确性要求高

当员工或客户在查询知识库时,他们期待得到的不仅仅是答案,而是准确无误、切实可行的解决方案。知识库的准确性直接影响到用户的体验和企业决策的质量。因此,构建一个能够提供精确信息和数据的知识库系统,对于提高企业运营效率和增强用户信任具有不可估量的价值。

3. 知识库核心功能 

1)知识库更新与导入功能

为了保持知识库的时效性和准确性,必须定期进行内容更新和数据导入。系统应提供一个直观易用的界面,让授权人员能够方便地上传和更新文件,不论是初始化知识库还是后续的维护阶段。

2)知识库检索与增强功能

面对用户的咨询,系统需要快速而准确地提供答案。利用RAG(Retrieval-Augmented Generation)机制,即将自然语言处理技术和向量搜索结合使用,可以显著提升答案的质量。通过理解用户提问的上下文,系统先从本地知识库中检索相关信息,然后利用这些信息来增强生成模型的答案,从而产生更为全面和精确的回复。通过这种机制提高答案的相关性和信息丰富度,同时大大增强了用户体验。

三、本地知识库架构设计 

1. RAG架构分析 

1)知识数据向量化 

加载:通过文档加载器(DocumentLoaders)加载我们的数据(本地知识库)。
拆分:文本拆分器将大型文档拆分为较小的块。便于向量或和后续检索。
向量:对拆分的数据块,进行Embedding向量化处理。
存储:将向量化的数据块存储到向量数据库VectorDB 中,方便进行搜索。

2)知识数据检索返回

检索:根据用户输入,使用检索器从存储中检索相关的拆分。
生成:使用包含问题和检索到的数据的提示,交给ChatModel / LLM(聊天模型/语言生成模型)生成答案。

2. 大模型方案选型

技术方案

模型选择

调试方式

周期

数据类型

开发门槛

技术门槛

微调Fine-tuning

相关开源模型,比如:GLM,Llama等

通过微调更新积累知识

调试

时间长

敏感的数据(私有部署)

需要GPU算力环境支持

需要比较深AI算法知识储备

Embedding

通常选择闭源模型

通过更新迭代向量数据库

调试

时间短

通用可公开

基于第三方API

相对较少的AI知识技能储备

GPT助手

OpenAI或者其他大模型

通过Prompt更新知识

调试

时间短

通用可公开

非常少量的AI知识技能储备

1)方案三相当于我们常用的很多GPT助手工具,不需要开发,直接通过prompt,将背景知识库给到通用大模型,个人使用比较多。
2)通常企业级落地方案一般都会采用微调+Embedding 两者结合的方案实现,主要保证数据的私有性;
3)如果没有算力环境支撑,同时又是可公开数据则可采用Embedding方案。

本次项目实践主要采用Embedding方案,借用向量数据库实现。

3. 应用技术架构选型

LLM+VectorDB+Prompt+LanChain

用户提问后,问题信息由LangChain调用嵌入模型向量化,再查询向量数据库获取结果;

接着在由LangChain将向量数据库返回的内容给到LLM,由LLM处理整合出最终答案给到用户。

4. 向量数据库选型

在上一篇《AI大模型探索之路-应用篇12:AI大模型应用之向量数据库选型》我们有探讨相关的向量数据库选型。

本项目这次实践过程中,先采用轻量级的适合个人开发调试的向量数据库Faiss。

5. 模型选型

1. Embedding Model(嵌入模型):OpenAI 的text-embedding-3-small
2. LLM模型选择: 同样的统一采用OpenAI

主要是目前使用的是OpenAI的API KEY,先把羊毛撸到底,后续篇章再考虑其他大模型的学习使用

三、本地知识库RAG评估

在前面系列文章中Ragas篇章《AI大模型探索之路-应用篇11:AI大模型应用智能评估(Ragas)》

有详细介绍说明关于AI大模型智能评估相关,本章节不再另作说明。

四、本地知识库代码落地

1. 文件解析

定义PDF文件解析函数extract_text_from_PDF;用于解析知识库文档(后续可以扩展支持多个文件格式)

from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS#, Milvus, Pinecone, Chroma
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from models.llm_model import get_openai_model
import streamlit as st
from config.keys import Keys
from PyPDF2 import PdfReader
from prompt.prompt_templates import bot_template, user_template


def extract_text_from_PDF(files):

    text = ""
    for pdf in files:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()

    return text

2. 文件分割

需要基于token阀值和文档结构考虑分割大小;
叠加冗余:进行分割时,要避免知识切片导致信息丢失,要保持上下文的连贯;
数据结构整理:本地知识库需要提前整理成结构清晰,且语义化的数据结构。

def split_content_into_chunks(text):
    text_spliter = CharacterTextSplitter(separator="\n",    # 指定分隔符为换行符("\n")将根据换行符进行分割。
                                         chunk_size=500,    # 指定每个分割后的文本块的大小为500个字符
                                         chunk_overlap=50,  # 指定分割后的文本块之间的重叠大小为50个字符
                                         length_function=len)
    chunks = text_spliter.split_text(text)

    return chunks

3. 数据库操作

基于数据库选型,操作不同的数据库服务

def save_chunks_into_vectorstore(content_chunks, embedding_model):
    # ① FAISS
    # pip install faiss-gpu (如果没有GPU,那么 pip install faiss-cpu)
    vectorstore = FAISS.from_texts(texts=content_chunks,
                                      embedding=embedding_model)
    # ② Pinecone 待扩展
    # ③ Milvus 待扩展
    return vectorstore

4.Chain对话链

用于调用langchain提供的对话检索链,将向量数据库中检索到结果给到LLM,再由LLM调用大模型整合之后返回对话答案

def get_chat_chain(vector_store):
    # ① 获取 LLM model(核心优化地方)
    llm = get_openai_model()

    # 用于缓存或者保存对话历史记录的对象
    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    # ③ 对话链
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vector_store.as_retriever(),
        memory=memory
    )

    return conversation_chain

5. 模型调用封装

定义一个LLM模型和一个嵌入模型
核心关注点temperature=0;对于知识库我们要求内容要尽量保持严谨。

def get_openai_model():
    llm_model = ChatOpenAI(openai_api_key=Keys.OPENAI_API_KEY,
                           model_name=Keys.MODEL_NAME,
                           temperature=0)
    return llm_model


def get_openaiEmbedding_model():
    return OpenAIEmbeddings(openai_api_key=Keys.OPENAI_API_KEY)

6. 知识库导入更新

对知识库进行解析、分割、嵌入向量化、存储到向量数据库

# 1.上传PDF文件
files = st.file_uploader("上传知识文档,然后点击'提交并处理'", accept_multiple_files=True)

# 2. 获取文档内容(文本)
texts = extract_text_from_PDF(files)

# 3. 将获取到的文档内容进行切分
content_chunks = split_content_into_chunks(texts)

# 4. 向量化并且存储数据
embedding_model = get_openaiEmbedding_model()
vector_store = save_chunks_into_vectorstore(content_chunks, embedding_model)

# 5. 创建对话chain
conversation= get_chat_chain(vector_store)

7. 对话聊天处理

接收用户传入的问题,并调用Chain链进行处理后,返回结果

conversation({'question': user_input})

8. LangSmith监控配置

可以提前将下面配置设置在环境变量中

os.environ["LANGCHAIN_TRACING_V2"]= "true"
os.environ["LANGCHAIN_ENDPOINT"]= "https://api.smith.langchain.com"
os.environ["LANGCHAIN_API_KEY"]= os.getenv("LANGCHAIN_API_KEY")
os.environ["LANGCHAIN_PROJECT"]="langsmith02"

五、本地知识库项目上线

1. 项目启动运行

streamlit run knowledge_chatbot.py

2. 知识库导入更新

 访问上面8501端口地址;通过左侧栏“知识文档”处,进行上传导入知识库文件

3. 聊天对话测试

通过对话窗口,提问知识库中的内容

继续提问测试

4. 查看运行监控

登录到LangSmith平台可以查看到对话聊天过程中的整个Agent调用链路


总结

通过CVP架构的实践,我们成功地实现了一个企业级的知识库项目落地。这一过程中不仅涵盖了从需求分析到架构设计,再到代码落地和项目上线的全方位技术实施,还特别强调了数据的安全性、准确性和核心功能的实现。最终,通过精心设计的技术堆栈和细致的开发过程,我们构建了一个既安全又高效的企业知识库,它不仅能够响应用户的精准查询,还能够作为一个强大的知识中心,为企业带来信息时代的竞争优势。

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,敬请关注并给予支持。

                              期待各位老铁多多支持,高质量互三!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/542638.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CSS文本单行溢出和多行溢出样式

一、单行溢出 1.代码 <!DOCTYPE html> <html><head><meta charset"UTF-8" /><title>demo</title><style>#div2{overflow: hidden;white-space: nowrap;/*强制不换行*/text-overflow:ellipsis;/*超出的部分用省略号代替*…

一起学习python——基础篇(19)

今天来说一下python的如何修改文件名称、获取文件大小、读取文中指定的某一行内容。 1、修改文件名称&#xff1a; import os testPath"D:/pythonFile/test.txt" testPath2"D:/pythonFile/test2.txt" #修改文件名称使用rename方法&#xff0c; #第一个参…

Mac环境 llamafile 部署大语言模型LLM

文章目录 Github官网本地部署 llamafile 是一种可在你自己的电脑上运行的可执行大型语言模型&#xff08;LLM&#xff09;&#xff0c;它包含了给定的开放 LLM 的权重&#xff0c;以及运行该模型所需的一切。让人惊喜的是&#xff0c;你无需进行任何安装或配置。 Github https…

CSS核心样式-04-定位属性+轮播图静态结构布局案例

目录 十、定位属性 概念 定位属性 position 偏移量属性 1. 相对定位 性质 注意事项 实际应用 应用1&#xff1a;导航栏位置微调 应用2&#xff1a;文字位置微调 2. 绝对定位 绝对定位的性质 注意事项 为参考元素的参考点 祖先级为参考元素 祖先元素参考点 3. 固定…

【150套】基于SSM框架的Java毕业设计开发实战项目(附源码+演示视频+LW)

大家好&#xff01;我是程序员一帆&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f9e1;今天给大家分享150的Java毕业设计&#xff0c;基于ssm框架&#xff0c;这些项目都经过精心挑选&#xff0c;涵盖了不同的实战主题和用例&#xff0c;可做毕业设计和课程…

数据库SQL语言实战(一)

目录 创建SQL表 题目一 题目二 题目三 插入数据 题目一 题目二 题目三 总结 创建SQL表 题目一 创建学生信息表&#xff08;学生编号、姓名、性别、年龄、出生日期、院系名称、班级&#xff09;&#xff1a; test1_student&#xff1a;sid char 12 not null、nam…

C语言入门(第一天:基础语法)

一、 使用工具 1、我们学习C语言所用的编辑器是Vscode&#xff0c;大家应该都不陌生了&#xff0c;但是要在编辑器内部编写C语言&#xff0c;我们需要下载安装一些工具插件来运行C语言。 有了以上两个工具就可以进行我们的C语言编译学习了&#xff01; 二、基础语法 1.第一个…

【opencv】示例-epipolar_lines.cpp 对极线

这段代码总的功能是使用OpenCV库进行立体视觉的估计。它从命令行读取两个图像文件名&#xff0c;使用SIFT算法检测关键点并计算这些点的描述子&#xff0c;接着通过FLANN库进行快速近似最近邻搜索来找到匹配的关键点。然后使用RANSAC方法计算基础矩阵&#xff0c;找到内点&…

Python学习笔记15 - 字符串

字符串是一个不可变的字符序列&#xff0c;另一个不可变的序列是元组 字符串的驻留机制 字符串的常用操作 字符串的查询 字符串的大小写转换 字符串内容 对齐操作的方法 字符串的劈分操作 字符串的判断 字符串替换 字符串合并 字符串的比较 字符串的切片 格式化字符串 字符串…

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果 目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果 一、简单介绍 二、简单动态聚光灯效果实现原理 三、简单动态聚光灯效果…

JVM、maven、Nexus

一、jvm简介 1.应用程序申请内存时出现的三种情况&#xff1a; ①OOM:内存溢出&#xff0c;是指应用系统中存在无法回收的内存或使用的内存过多&#xff0c;最终使得程序运行要用到的内存大于能提供的最大内存。此时程序就运行不了&#xff0c;系统会提示内存溢出&#xff0c…

GPT4.5发布了?OpenAI终于发布正式版Turbo,重回AI王座第一

令人惊讶的是&#xff0c;短短三个月内&#xff0c;全球最强AI的称号又一次易主了&#xff01;几个月前&#xff0c;Claude3 Opus的性能全面超过了GPT-4&#xff0c;全球网友纷纷转向Claude3&#xff0c;并分享了他们对Claude3的惊艳体验。然而&#xff0c;OpenAI最近再次展示了…

Nginx健康检查

Nginx健康检查nginx_upstream_check_module nginx健康检查介绍: ​ 主动健康检查&#xff0c;nignx定时主动地去ping后端的服务列表&#xff0c;当发现某服务出现异常时&#xff0c;把该服务从健康列表中移除&#xff0c;当发现某服务恢复时&#xff0c;又能够将该服务加回健…

网格(mesh)生成算法

mesh网格生成算法 1. 简介2. Points clouds Vs Meshes3. 为什么要生成mesh网格以及生成mesh网格的难点4. 常见的mesh网格生成算法 1. 简介 基于 3D视觉的新兴应用场景蓬勃发展&#xff0c;3D点云越来越受到人们的广泛关注。点云有着广泛的应用领域包括机器人技术、3D图形、自动…

多模态 ——LLaVA 集成先进图像理解与自然语言交互GPT-4的大模型

概述 提出了一种大型模型 LLaVA&#xff0c;它使用 GPT-4 生成多模态语言图像指令跟随数据&#xff0c;并利用该数据将视觉和语言理解融为一体。初步实验表明&#xff0c;LLaVA 展示了出色的多模态聊天能力&#xff0c;在合成多模态指令上的表现优于 GPT-4。 在科学质量保证中…

Java中volatile关键字

保证了不同线程对这个变量进行操作时的可见性&#xff0c;即一个线程修改了某个变量的值&#xff0c;这新值对其他线程来说是立即可见的,volatile关键字会强制将修改的值立即写入主存。 1.volatile的可见性 一个典型的例子&#xff1a;永不停止的循环。 public class Forever…

全网最好的JVM总结:有生命周期的JVM

1.编译 1.1 java中编译器有哪些&#xff1f; 前端编译器 javac后台即时编译器 JIT编译器静态提前编译器 &#xff08;一步到位&#xff0c;直接把java编译成二进制&#xff09; 2.2 编译过程是怎么样&#xff1f; 解析与填充符号表&#xff0c;生成语法树 &#xff08;编译…

设计模式学习笔记 - 设计模式与范式 -行为型:17.中介模式:什么时候用中介模式?什么时候用观察者模式?

概述 本章学习 23 种经典设计模式中的最后一个设计模式&#xff0c;中介模式。和之前讲过的命令模式、解释器模式类似&#xff0c;中介模式也不怎么常用&#xff0c;应用场景比较特殊、有限&#xff0c;但是&#xff0c;跟它俩不同的是&#xff0c;中介模式理解起来并不难&…

Linux部署自动化运维平台Spug

文章目录 前言1. Docker安装Spug2 . 本地访问测试3. Linux 安装cpolar4. 配置Spug公网访问地址5. 公网远程访问Spug管理界面6. 固定Spug公网地址 前言 Spug 面向中小型企业设计的轻量级无 Agent 的自动化运维平台&#xff0c;整合了主机管理、主机批量执行、主机在线终端、文件…

【深度学习】多层感知机与卷积神经网络解析

引言&#xff1a; 在人工智能的宏伟画卷中&#xff0c;深度学习如同一笔瑰丽而深邃的色彩&#xff0c;为这幅画增添了无限的生命力和潜能。作为支撑这一领域核心技术的基石&#xff0c;多层感知机&#xff08;MLP&#xff09;和卷积神经网络&#xff08;CNN&#xff09;在模仿人…