【MIT6.S081】Lab3: page tables(详细解答版)

实验内容网址:https://xv6.dgs.zone/labs/requirements/lab3.html
本实验的代码分支:https://gitee.com/dragonlalala/xv6-labs-2020/tree/pgtbl2/

Print a page table

关键点:递归、三级页表

思路:

[图片]

用上图来解释三级页表的原理最为清晰明了。satp的作用是存放根页表页在物理内存中的地址。页表以三级的树型结构存储在物理内存中。该树的根是一个4096字节(512*8byte)的页表页,其中包含512个PTE,每个PTE中包含该树下一级页表页的物理地址。这些页中的每一个PTE都包含该树最后一级的512个PTE(也就是说每个PTE占8个字节,正如图3.2最下面所描绘的)。分页硬件使用27位中的前9位在根页表页面中选择PTE,中间9位在树的下一级页表页面中选择PTE,最后9位选择最终的PTE。一级页表通过stap和L2确定二级页表的基地址,二级页表的基地址加上L1确定三级页表的基地址,三级页表的基地址和L0确定物理地址的前44位,与原来offset的12位组成了物理地址。总体上说,这个过程类似3级512叉树。这样做的目的是为了节省内存,在大范围的虚拟地址没有被映射的常见情况下,三级结构可以忽略整个页面目录。
在每一级页表中,后十位是标志位,在一二级页表中,这些标志位中的RWX是不使用的,一二级页表是起到索引功能,所以只使用了V标志位。

步骤&代码:

  1. kernel/vm.c中定义vmprint()函数,题目要求参数为pagetable_t,但在本题中,需要进行递归,并且递归过程中需要知道当前是递归的第几层,所以需要另外定义一个递归函数, _vmprint(pagetable, level);传递页表指针和递归层数。需要注意的是vmprint()函数需要到def.h文件中声明,_vmprint()函数需要在vmprint()函数前进行定义。
void            
vmprint(pagetable_t pagetable){
  // 打印根页表
  printf("page table %p\n", pagetable);
  // 重新写个函数是为了传递level级和递归
  _vmprint(pagetable, 1);
}
  1. 编写_vmprint()函数,仿照freewalk函数的遍历方式。通过pte & PTE_V可以判断pte的有效性,在有效的前提下通过 (pte & (PTE_R|PTE_W|PTE_X)) == 0)可以判断是哪一级页表,在第三级页表中,第三级页表存放的是物理地址,页表中页表项中W位,R位,X位起码有一位会被设置为1。根据以上思路编写如下代码:
void _vmprint(pagetable_t pagetable, int level){
  for(int i = 0; i < 512; i++){
    pte_t pte = pagetable[i];
    // 检查pte的有效性
    if(pte & PTE_V ){
      // this PTE points to a lower-level page table.
      uint64 child = PTE2PA(pte);
      // 打印树的深度
      for(int j = 0; j < level; j++){
        if(j==0){
          printf("..");//第一个..前面不打印空格
        }else{
          printf(" ..");
        }
      }
      printf("%d: pte %p pa %p\n",i,pte,child);
      // 第三级页表存放的是物理地址,页表中页表项中W位,R位,X位起码有一位会被设置为1。如果是索引页表则这些值是0
      if((pte & (PTE_R|PTE_W|PTE_X)) == 0){
        _vmprint((pagetable_t)child,level+1);// 还没到第三级,继续递归。
      }
        
    }
  }
}

A kernel page table per process

前置知识:

原本的xv6系统只有一个内核页表。内核页表直接映射(恒等映射)到物理地址,也就是说内核虚拟地址x映射到物理地址仍然是x。每个进程有单独的用户页表,但只包含该进程用户内存的映射,从虚拟地址0开始。内核页表中不含有这些映射,因此用户地址(虚拟地址)在内核中无效,只能通过copyin(),copyoput()等函数将用户地址转化为物理地址再使用。
关于内核栈:

内核栈页面。每个进程都有自己的内核栈,它将映射到偏高一些的地址,这样xv6在它之下就可以留下一个未映射的保护页(guard page)。保护页的PTE是无效的(也就是说PTE_V没有设置),所以如果内核溢出内核栈就会引发一个异常,内核触发panic。如果没有保护页,栈溢出将会覆盖其他内核内存,引发错误操作。恐慌崩溃(panic crash)是更可取的方案。(注:Guard page不会浪费物理内存,它只是占据了虚拟地址空间的一段靠后的地址,但并不映射到物理地址空间。)

如图中的kstack0,1是每个进程的内核栈。/kernel/proc.c文件中的procinit函数中初始化了每个进程的内核栈。在执行系统调用陷入内核之后,这些内核代码所使用的栈并不是原先进程用户空间中的栈,而是一个单独内核空间的栈,这个称作进程内核栈 ,除了系统调用,像进程切换时的上下文也是保存到内核栈中的。

// initialize the proc table at boot time.
void
procinit(void)
{
  struct proc *p;
  
  initlock(&pid_lock, "nextpid");
  for(p = proc; p < &proc[NPROC]; p++) {
      initlock(&p->lock, "proc");

      // Allocate a page for the process's kernel stack.
      // Map it high in memory, followed by an invalid
      // guard page.
      char *pa = kalloc();
      if(pa == 0)
        panic("kalloc");
      uint64 va = KSTACK((int) (p - proc));
      kvmmap(va, (uint64)pa, PGSIZE, PTE_R | PTE_W);
      p->kstack = va;
  }
  kvminithart();
}

在这里插入图片描述

OK,巴拉巴拉了一大堆,具体的解题过程还需要依靠题目的提示,接下来进入正题。

步骤&代码:

  1. struct proc中为进程的内核页表增加一个字段
struct proc{
...
  pagetable_t pagetable;       // User page table
  // 新添加
  pagetable_t kpt;             // kernel page table 
...
}
  1. 为一个新进程生成一个内核页表的合理方案是实现一个修改版的kvminit,这个版本中应当创造一个新的页表而不是修改kernel_pagetable。你将会考虑在allocproc中调用这个函数。
    我们仿照kvminit重写一个pagetable_t proc_kpt_init()函数,在kvminit函数中,外设的映射是使用kvmmap函数,该函数里面使用了kernel_pagetable,因此我们还需要重写一个void proc_kvmmmap(pagetable_t kpt, uint64 va, uint64 pa, uint64 sz, int perm)函数,将kpt页表指针作为函数参数进行传递。
// 为进程的内核页表新建一个初始化函数
pagetable_t proc_kpt_init(){

  pagetable_t kpt = (pagetable_t) kalloc();
  memset(kpt, 0, PGSIZE);

  // uart registers
  proc_kvmmmap(kpt, UART0, UART0, PGSIZE, PTE_R | PTE_W);

  // virtio mmio disk interface
  proc_kvmmmap(kpt, VIRTIO0, VIRTIO0, PGSIZE, PTE_R | PTE_W);

  // CLINT
  proc_kvmmmap(kpt, CLINT, CLINT, 0x10000, PTE_R | PTE_W);

  // PLIC
  proc_kvmmmap(kpt, PLIC, PLIC, 0x400000, PTE_R | PTE_W);

  // map kernel text executable and read-only.
  proc_kvmmmap(kpt, KERNBASE, KERNBASE, (uint64)etext-KERNBASE, PTE_R | PTE_X);

  // map kernel data and the physical RAM we'll make use of.
  proc_kvmmmap(kpt, (uint64)etext, (uint64)etext, PHYSTOP-(uint64)etext, PTE_R | PTE_W);

  // map the trampoline for trap entry/exit to
  // the highest virtual address in the kernel.
  proc_kvmmmap(kpt, TRAMPOLINE, (uint64)trampoline, PGSIZE, PTE_R | PTE_X);
  return kpt;
}


// kvmmap是为内核页表的虚拟地址与物理地址做映射,这里需要重新添加一个类似的函数
void proc_kvmmmap(pagetable_t kpt, uint64 va, uint64 pa, uint64 sz, int perm){
  if(mappages(kpt, va, sz, pa, perm) != 0)
    panic("proc_kvmmap");
}

函数定义完后记得把函数声明添加到defs.h文件中。
allocproc中调用proc_kpt_init()函数

static struct proc*
allocproc(void)
{
...
...
// An empty user page table.
  p->pagetable = proc_pagetable(p);
  if(p->pagetable == 0){
    freeproc(p);
    release(&p->lock);
    return 0;
  }

  // ljg add 
  // An empty kernel page table.
  p->kpt = proc_kpt_init();
...

}
  1. 确保每一个进程的内核页表都关于该进程的内核栈有一个映射。在未修改的XV6中,所有的内核栈都在procinit中设置。你将要把这个功能部分或全部的迁移到allocproc
    参照/kernel/proc.c文件中的procinit函数中初始化了每个进程的内核栈,并在allocproc函数中的p->kpt = proc_kpt_init();语句后添加
 // 申请内核栈,确保每一个进程的内核页表都关于该进程的内核栈有一个映射
  char *pa = kalloc();
  if(pa == 0)
    panic("kalloc");
  uint64 va = KSTACK((int) (p - proc));
  proc_kvmmmap(p->kpt, va, (uint64)pa, PGSIZE, PTE_R | PTE_W);
  p->kstack = va;
  1. 修改scheduler()来加载进程的内核页表到核心的satp寄存器(参阅kvminithart来获取启发)。不要忘记在调用完w_satp()后调用sfence_vma()
  2. 没有进程运行时scheduler()应当使用kernel_pagetable
    参照kvminithart函数,在其附近新添加proc_kvminithart函数,以实现传递页表指针。
void
proc_kvminithart(pagetable_t kpt){
  w_satp(MAKE_SATP(kpt));
  sfence_vma();
}

然后在scheduler()函数中,进程切换前调用proc_kvminithart()函数。根据“没有进程运行时scheduler()应当使用kernel_pagetable”要求,在进程切换出去–>回来后调用kvminithart()函数。(不懂为什么要在这个时候?)

void
scheduler(void)
{
...
    p->state = RUNNING;
    c->proc = p;
    // 加载进程的内核页表到核心的satp寄存器
    proc_kvminithart(p->kpt);
    swtch(&c->context, &p->context);
    
    // ljg add Come back to the global kernel page table
    kvminithart();
    // Process is done running for now.
    // It should have changed its p->state before coming back.
    c->proc = 0;
 ...

}
  1. freeproc中释放一个进程的内核页表
    参照freewalk函数在vm.c文件中添加free_proc_kpt()函数。
// 释放进程的内核页表
void
free_proc_kpt(pagetable_t pagetable)
{
  // there are 2^9 = 512 PTEs in a page table.
  for(int i = 0; i < 512; i++){
    pte_t pte = pagetable[i];
    if(pte & PTE_V){
      // this PTE points to a lower-level page table.
      uint64 child = PTE2PA(pte);
      pagetable[i] = 0;
      if((pte & (PTE_R|PTE_W|PTE_X)) == 0){// 说明不是第三级,进行递归
        free_proc_kpt((pagetable_t)child);
      }
    } 
  }
  kfree((void*)pagetable);
}

freeproc()函数中,释放内核栈和内核页表

static void
freeproc(struct proc *p)
{
...
    if(p->pagetable)
        proc_freepagetable(p->pagetable, p->sz);
    p->pagetable = 0;
    // 释放一个进程的内核栈
    if(p->kstack){
    uvmunmap(p->kpt, p->kstack, 1, 1);
    }
    p->kstack = 0;
    // 释放内核页表
    free_proc_kpt(p->kpt);
    p->kpt = 0;
...
}
  1. defs.h文件中添加以上函数的声明
void            vmprint(pagetable_t);
pagetable_t     proc_kpt_init();
void            proc_kvmmmap(pagetable_t, uint64 , uint64 , uint64 , int );
void            proc_kvminithart(pagetable_t );
void            free_proc_kpt(pagetable_t pagetable);

进行编译,会发现无法启动系统,报"virtio_disk_intr status"的错误。
原因在于 virtio_disk_rw()函数中为buf申请内核地址时使用了kernel_pagetable,因此要在kvmpa函数中
修改一处地方

uint64
kvmpa(uint64 va)
{
  uint64 off = va % PGSIZE;
  pte_t *pte;
  uint64 pa;
  
  pte = walk(myproc()->kpt, va, 0);// 新修改
  if(pte == 0)
    panic("kvmpa");
  if((*pte & PTE_V) == 0)
    panic("kvmpa");
  pa = PTE2PA(*pte);
  return pa+off;
}

进行编译,会出现以下错误。

In file included from kernel/vm.c:9:
kernel/proc.h:87:19: error: field ‘lock’ has incomplete type
87 | struct spinlock lock;
| ^~~~
make: *** [: kernel/vm.o] Error 1

在vm.c中包含头文件即可解决。

#include "spinlock.h"
#include "proc.h"

编译成功后运行usertests,运行通过则本题完成

Simplify

关键点:题目含义

思路:

即使是第二遍做这个题目一开始也不知道怎么入手。哈哈哈
题目需要我将用户空间的映射添加到每个进程的内核页表,将进程的页表复制一份到进程的内核页表就好。
Xv6使用从零开始的虚拟地址作为用户地址空间,而内核的内存从更高的地址开始。然而,这个方案将用户进程的最大大小限制为小于内核的最低虚拟地址,为0xC000000,即PLIC寄存器的地址;

步骤&代码:

  1. vm.c文件中,仿照uvmcopy()函数新建一个复制用户页表映射到每个进程的内核页表映射的函数。uvmcopy()函数是复制父进程的映射到子进程的映射。代码如下:
// 仿照uvmcopy()函数,实现将用户空间的映射添加到每个进程的内核页表
void 
u2k_vmcopy(pagetable_t pagetable, pagetable_t kpt, uint64 oldsz, uint64 newsz){
  pte_t *pte_from;
  pte_t *pte_to;
  oldsz = PGROUNDUP(oldsz);

  for(uint64 i = oldsz; i < newsz; i += PGSIZE){
    // 对页表pagetable中虚拟地址为i进行检查,检查pte是否存在
    if((pte_from = walk(pagetable, i, 0)) == 0)
      panic("u2k_vmcopy: pte should exist");
    // 对内核页表kpt中虚拟地址为i进行检查,检查pte是否存在,若不存在则申请物理内存并映射。
    if((pte_to = walk(kpt, i, 1)) == 0){
      panic("u2k_vmcopy: pte walk fail");
    }
    // 在内核模式下,无法访问设置了PTE_U的页面,
    // 所以接下来要获得pagetable中虚拟地址为i的pte的标志位
    
    // uint64 pa = PTE2PA(*pte_from);
    // uint flags = (PTE_FLAGS(*pte_from)) & (~PTE_U);
    // *pte_to = PA2PTE(pa) | flags;
    // 感觉上面三句有点多,改成一句
    *pte_to = (*pte_from) & (~PTE_U);
  }
}
  1. 根据提示在exec,fork,sbrk函数中添加u2k_vmcopy()函数的调用。
    exec()
int
exec(char *path, char **argv)
{
...
  uvmclear(pagetable, sz-2*PGSIZE);
  sp = sz;
  stackbase = sp - PGSIZE;

  // 添加复制逻辑
  u2k_vmcopy(pagetable, p->kpt, 0, sz);

  // Push argument strings, prepare rest of stack in ustack.
  for(argc = 0; argv[argc]; argc++) {
 ...
}

fork()

int
fork(void)
{
...
  np->sz = p->sz;
  // 复制到新进程的内核页表
  u2k_vmcopy(np->pagetable, np->kpt, 0, np->sz);
  np->parent = p;
...
}

sbrk() -> sys_sbrk() -> growproc()函数中,在内存增加时,需要判断一下会不会超过PLIC限制,不超过再复制一份映射到内核页表

int
growproc(int n)
{
  uint sz;
  struct proc *p = myproc();

  sz = p->sz;
  if(n > 0){
    // 加上PLIC限制
    if(PGROUNDUP(sz+n) >= PLIC){
      return -1;
    }
    if((sz = uvmalloc(p->pagetable, sz, sz + n)) == 0) {
      return -1;
    }
    // 复制一份到内核页表
    u2k_vmcopy(p->pagetable, p->kpt, sz - n, sz);
  } else if(n < 0){
    sz = uvmdealloc(p->pagetable, sz, sz + n);
  }
  p->sz = sz;
  return 0;

} 
  1. userinit的内核页表中包含第一个进程的用户页表,在这里也需要复制一份
void
userinit(void)
{
...
  uvminit(p->pagetable, initcode, sizeof(initcode));
  p->sz = PGSIZE;
  // 复制一份到内核页表
  u2k_vmcopy(p->pagetable, p->kpt, 0, p->sz);

  // prepare for the very first "return" from kernel to user.
...

}

记得在defs.h中添加u2k_vmcopy()函数的声明。完毕!

未解:

上述的这几个函数调用的位置可以思考一下,为什么需要在exec,fork,sbrk函数中调用?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/541562.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RISC-V技术变革:一颗芯片,CPU与GPU合二为一

一颗万能的RISC-V芯片: 将CPU和GPU整合到一个核中 X-Silicon 推出创新的 RISC-V 芯片架构,将 CPU、矢量功能和 GPU 加速无缝集成。这种开源混合芯片专为多功能工作负载而设计,包括人工智能,旨在通过高效处理提升性能。 革命性的 CPU/GPU 混合处理器全新的 RISC-V CPU/GPU 混…

【前端面试3+1】12 toktn验证过程、面向对象特性、webpack和vite的区别、【字符串中的第一个唯一字符】

一、token验证过程 用户登录&#xff1a;用户提供用户名和密码进行登录。服务器验证&#xff1a;服务器接收到用户提供的用户名和密码&#xff0c;进行验证。生成token&#xff1a;如果用户名和密码验证通过&#xff0c;服务器会生成一个token&#xff0c;通常包含一些加密的信…

从 iPhone 上的短信中恢复已删除的图片的可靠方法

您可能在浏览消息聊天时不小心删除了一些文本和照片。事实上&#xff0c;如果这些消息对你来说意义重大&#xff0c;那对你来说可能会很麻烦。当发生意外情况时&#xff0c;您可能不想恢复整个聊天&#xff0c;而是恢复其中的附件。 好了&#xff0c;这篇文章主要是讲如何灵活…

关于故障诊断的一些事-答知乎问(四)

利用深度学习模型进行机械故障诊断技术的难点是什么&#xff1f; 除了严格的可解释性之外&#xff0c;还有 1.很多机械设备经常运行在转速多变、载荷冲击、噪声淹没的恶劣工作环境之下&#xff0c;振动监测信号内包含了多种故障频率成分和背景噪声信息&#xff0c;是一种非常…

【C语言基础】:预处理详解(一)

文章目录 一、预定义符号二、#define定义常量三、#define定义宏四、带有副作用的宏参数五、宏替换的规则 一、预定义符号 在C语言中设置了许多的预定义符号&#xff0c;这些预定义符号是可以直接使用的&#xff0c;预定义符号也是在预处理阶段进行处理的。 常见的预定义符号&…

【系统分析师】计算机组成与体系架构

文章目录 1、编码及浮点数运算2、flynn分类法3、CISC和 RISC4、流水线技术5、存储技术5.1层次化存储结构5.2 Cache5.2.1 cache页面淘汰5.2.2 cache的读写 5.3 主存5.3.1主存编址5.3.2 磁盘 5.4 总线 6、校验码7、系统可靠性计算7.1可靠性指标7.2 串联系统与并联系统7.3性能指标…

Vue3——html-doc-ja(html导出为word的js库)

一、下载 官方地址 html-doc-js - npm npm install html-doc-js 二、使用方法 // 使用页面中引入 import exportWord from html-doc-js// 配置项以及实现下载方法 const wrap document.getElementById(test)const config {document:document, //默认当前文档的document…

如何将三方库集成到hap包中——通过IDE集成非cmake方式构建的C/C++三方库

简介 DevEco Studio(简称IDE)目前只支持cmake构建方式&#xff0c;对于非cmake构建方式的三方库需要通过IDE工具集成的话&#xff0c;我们需要对原生库编写一个cmake的构建脚本。本文通过tinyxpath三方库为例介绍如何在IDE上移植一个非cmake构建方式的三方库。 cmake构建脚本…

酷得智能 无人机方案开发

东莞市酷得智能科技有限公司&#xff0c;是一家专业的技术服务公司&#xff0c;致力于为各类智能硬件提供高效、稳定、安全的底层驱动解决方案。拥有一支经验丰富、技术精湛的团队&#xff0c;能够为客户提供全方位的底层驱动开发服务。 无人机功能介绍&#xff1a; 1、自动跟…

字符和字符串操作函数总结

索引 一 . 字符操作函数1. 字符分类函数2. 字符转换函数 二 . 字符串操作函数长度不受限制的字符串操作函数1. strcpy函数的使用和模拟实现2. strcat函数的使用和模拟实现3. strcmp函数的使用和模拟实现 长度受限制的字符串操作函数1. strncpy函数的使用2. strncat函数的使用3.…

字符函数strlen、strcpy、strcat、strcmp、strstr、strtok、 strerror和perror函数

目录 1、strlen函数 strlen函数的模拟实现 2、strcpy函数 strcpy函数的模拟实现 strncpy函数 strncpy函数的模拟实现 3、srtcat函数 strcat函数的模拟实现 strncat函数 strncat函数的模拟实现 4、strcmp函数 strcmp函数的模拟实现 strncmp函数 5、strstr函数 st…

anaconda创建了虚拟python环境,且安装了pytorch,但是pycharm中import torch运行时报错

报错如下&#xff1a; C:\Users\tashi\.conda\envs\test1\python.exe D:\project\python\transformer\main.py C:\Users\tashi\.conda\envs\test1\lib\site-packages\numpy\__init__.py:127: UserWarning: mkl-service package failed to import, therefore Intel(R) MKL init…

AI虽强,搜索引擎仍不可或缺

AI 领域正以前所未有的速度发展&#xff0c;大模型的发布变得愈发频繁&#xff0c;模型的规模也在持续扩大。如今&#xff0c;大模型的起点已经攀升至数十亿参数&#xff08;数十 B&#xff0c;B 是 Billion 的简写&#xff0c;10 亿&#xff09;&#xff0c;其功能之广泛&…

二、Python接口自动化fixture和conftest

1、fixture详解 fixture概念fixture是 pytest 用于将测试前后进行预备、清理工作的代码处理机制。 fixture相对于setup和teardown来说有以下几点优势: • fixure命名更加灵活&#xff0c;局限性比较小 • conftest.py 配置里面可以实现数据共享&#xff0c;不需要import就能自…

嵌入式sqlite3交叉编译移植

操作系统:Ubuntu20.04 下载sqlite3代码,下载版本3.30.00 wget https://www.sqlite.org/2019/sqlite-amalgamation-3300000.zip 或者https://download.csdn.net/download/benico/89127678 为什么下载amalgamation版本,不下载autoconf版本? 根据我的编译实验,同版本sql…

错题记录-华为海思

华为 海思数字芯片 参考 &#xff1a;FPGA开发/数字IC笔试系列(5) 华为海思IC笔试解析 FPGA开发/数字IC笔试系列(6) 华为海思IC笔试解析 SystemVerilog Function与Task的区别 $readmemh与$readmemb这两个系统任务是用来从指定文件中读取数据到寄存器数组或者RAM、ROM中。除了…

stm32与esp8266WIFI模块

硬件介绍 WIFI模块ESP-01S 使用AT指令控制1-ESP8266-AT指令初试化及部分基础知识_ch_pd-CSDN博客 项目需求 通过ESP-01SWIFI模块控制LED状态模拟插座 串口1用于与ESP8266通讯&#xff0c;串口2连接PC&#xff0c;用于打印log&#xff0c;查看系统状态 项目接线 将WIFI模块的…

LLM大语言模型微调方法和技术汇总

本文详细介绍了机器学习中的微调技术&#xff0c;特别是在预训练模型上进行微调的方法和技术。文章首先解释了什么是微调&#xff0c;即在预训练模型的基础上&#xff0c;通过特定任务的数据进行有监督训练&#xff0c;以提高模型在该任务上的性能。随后&#xff0c;详细介绍了…

Sonatype Nexus 服务器迁移

因为服务器的升级和调整&#xff0c;有时候会对安装 Sonatype Nexus 的服务器进行迁移到新服务器上。 从技术架构上来说&#xff0c;Sonatype Nexus 我们使用的是 AWS 的存储&#xff0c;所以我们并不需要拷贝大量的数据。 文件夹结构 在备份和恢复之前&#xff0c;我们需要…

OpenHarmony开源三方库的cmake在IDE上直接引用的问题

前言 DevEco Studio的native工程的C/C部分当前只支持cmake脚本的编译&#xff0c;工程的目录结构如下图所示 在工程中引用第三方库有如下三种方式&#xff0c; 一、find_package模式 通过find_package&#xff0c;可以在指定目录下去搜索已安装的库&#xff08;三方库构建完后…