Unet++网络
Dense connection
Unet++继承了Unet的结构,同时又借鉴了DenseNet的稠密连接方式(图1中各种分支)。
作者通过各层之间的稠密连接,互相连接起来,就像Denset那样,前前后后每一个模块互相作用,每一个模块都能看到彼此,那对彼此互相熟悉,分割效果自然就会变好。
在实际分割中,一次次的下采样自然会丢掉一些细节特征,在Unet中是使用skip connection来恢复这些细节,但能否做的更好呢?Unet++就给出了答案,这种稠密连接的方式,每一层都尽量多的保存这种细节信息和全局信息,一层层之间架起桥梁互相沟通,最后共享给最后一层,实现全局信息和局部信息的保留和重构。
deep supervision
当然,简单的将各个模块连接起来是会实现很好的效果。而我们又能发现,一个Unet++其实是很多个不同深度的Unet++叠加。那么,每一个深度的Unet++是不是就都可以输出一个loss?答案自然是可以的。
所以,作者提出了deep supervision,也就是监督每一个深度的Unet++的输出,通过一定的方式来叠加Loss(比如加权的方式),这样就得到了一个经由1、2、3、4层的Unet++的加权Loss(图2 不同深度Unet&