C++如何排查并发编程死锁问题?

C++如何排查并发编程死锁问题?

最近在Apache arrow里面写一个支持并行的算子:nested loop join,然后既然涉及到并行,这里就会遇到大家常说的死锁问题,假设你碰到了死锁问题,如何调试与定位呢?

那这便是本篇目标,帮助你快速掌握并发编程:死锁检测与死锁调试问题,非常的干,好了进行正文。

1.引入

为了更好的讲解死锁,我们用一个程序来引入。

std::mutex gMutex;

int t2() {
  std::lock_guard<std::mutex> m(gMutex);
  return 0;
}

int t1() {
  std::lock_guard<std::mutex> l(gMutex);
  return t2();
}

相信看这个程序,大家都会觉得有问题,死锁了!问题出在t1()函数和t2()函数中都对全局的互斥锁gMutex进行了加锁操作,但是t1()函数在加锁后调用了t2()函数,而t2()函数内部又试图再次对gMutex进行加锁。

t1锁已经加上了,但还没释放,t2又去加锁,两个人都在等待谁先释放,进入了死循环,实际在项目中代码并不会如这里这么简单,非常的复杂,例如:我在Apache arrow中写的代码是这样:

Status OnBuildSideFinished(size_t thread_index) {
  std::lock_guard<std::mutex> guard(probe_side_mutex_);
  // do something
  accumulate_build_ready_ = true;
  return scheduler_->StartTaskGroup(thread_index,task_group_probe_,queued_batches_to_probe_.batch_count()); 
}

你看这个代码比上面的场景就复杂多了,嵌套了至少5层堆栈,剩余代码还没贴出来,但是这两个本质都是一个死锁模型。

2.调试

讲解了死锁模型之后,碰到这种问题,如何定位呢?

这里可以采用两种办法,第一种直接运行程序,然后gdb上去。

例如:

./a.out

然后找到进程号后:

gdb -p xxx

此时我们可以得到及格正在等待的线程。

(gdb) info threads 
  Id   Target Id                                 Frame 
* 1    Thread 0x7ffff7fe2740 (LWP 32301) "a.out" 0x00007ffff7bc8017 in pthread_join () from /lib64/libpthread.so.0
  2    Thread 0x7ffff6fd0700 (LWP 32305) "a.out" 0x00007ffff7bcd54d in __lll_lock_wait () from /lib64/libpthread.so.0

然后去看__lll_lock_wait的堆栈,例如这里我看了2号线程,然后查看堆栈得到t1与t2的行号,直接可以定位到哪里出了问题,非常的直观!

除了这种方式之外,还可以直接gdb上去运行程序,此时会卡死,然后ctrl + c杀掉之后也是可以跟上面一样的内容。

例如:

(gdb) r
Starting program: /home/light/a.out 
Missing separate debuginfos, use: debuginfo-install glibc-2.17-326.el7_9.x86_64
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
Hello World!
[New Thread 0x7ffff6fd0700 (LWP 32305)]
^C
Thread 1 "a.out" received signal SIGINT, Interrupt.
0x00007ffff7bc8017 in pthread_join () from /lib64/libpthread.so.0
Missing separate debuginfos, use: debuginfo-install libgcc-4.8.5-44.el7.x86_64 libstdc++-4.8.5-44.el7.x86_64
(gdb) info threads 
  Id   Target Id                                 Frame 
* 1    Thread 0x7ffff7fe2740 (LWP 32301) "a.out" 0x00007ffff7bc8017 in pthread_join () from /lib64/libpthread.so.0
  2    Thread 0x7ffff6fd0700 (LWP 32305) "a.out" 0x00007ffff7bcd54d in __lll_lock_wait () from /lib64/libpthread.so.0

好了,本节就讲这么多,感兴趣的欢迎转发这篇硬核文章!于此同时,推荐一下自己的线程池项目,个人用视频讲解了这个项目,同时配上docker一键部署(这一期的视频,后面打算给大家录制一下),感兴趣的联系我即可。

热度更新,手把手实现工业级线程池

a091cd1f769dca4cda4a27b7d7f13206.jpeg

d38e169a18493216b0dfbc0258356908.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/540234.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

最小均方(LMS)自适应滤波算法

1 LMS函数实现 % ----------------------------LMS(Least Mean Squre)算法------------------------------ % % parm: % xn 输入的信号序列 (列向量) % dn 所期望的响应序列 (列向量) % M 滤波器的阶数 (标量) % mu 收敛因子(步长) …

统信UOS(Linux)安装nvm node管理工具

整篇看完再操作&#xff0c;有坑&#xff01;&#xff01; 官网 nvm官网 按照官网方式安装&#xff0c;一直报 错 经过不断研究&#xff0c;正确步骤如下 1、下载安装包 可能因为网络安全不能访问github&#xff0c;我是链接热点下载的 wget https://github.com/nvm-sh/…

Java Maven项目推送到 Maven 中央仓库

准备阶段 namespace 域名认证 当需要在 sonatype 认证 com.xxx命名空间时&#xff0c;需要将 .xxx.com 配置域名解析。 记录类型&#xff1a;TXT 文本内容&#xff1a;验证的 key。 GPG 公私钥生成 GPG 下载地址&#xff1a;https://www.gnupg.org/download/index.html M…

RestTemplate—微服务远程调用—案例解析

简介&#xff1a;总结来说&#xff0c;微服务之间的调用方式有多种&#xff0c;选择哪种方式取决于具体的业务需求、技术栈和架构设计。RESTful API和HTTP客户端是常见的选择&#xff0c;而Feign和Ribbon等辅助库可以简化调用过程。RPC和消息队列适用于特定的场景&#xff0c;如…

单片机方案 发声毛绒小黄鸭

随着科技的不断进步&#xff0c;智能早教已经成为了新时代儿童教育的趋势。智能早教玩具&#xff0c;一款集互动陪伴、启蒙教育、情感培养于一身的高科技产品。它不仅能陪伴孩子成长&#xff0c;还能在游戏中启迪智慧&#xff0c;是家长和孩子的理想选择。 酷得电子方案开发特…

OV通配符证书:安全、便捷的网络认证新选择

OV通配符证书&#xff0c;即组织验证型通配符证书&#xff0c;其最大特点在于其通配符功能。这意味着&#xff0c;一个OV通配符证书可以覆盖同一主域名下的多个子域名&#xff0c;大大简化了证书管理和维护的复杂性。无论是大型企业还是个人网站&#xff0c;都可以通过OV通配符…

[面向对象] 单例模式与工厂模式

单例模式 是一种创建模式&#xff0c;保证一个类只有一个实例&#xff0c;且提供访问实例的全局节点。 工厂模式 面向对象其中的三大原则&#xff1a; 单一职责&#xff1a;一个类只有一个职责&#xff08;Game类负责什么时候创建英雄机&#xff0c;而不需要知道创建英雄机要…

多因子模型的数据处理

优质博文&#xff1a;IT-BLOG-CN 数据处理的基本目的是从多量的、可能是杂乱无章的、难以理解的数据中抽取并推导出有价值、有意义的数据。特别是金融数据&#xff0c;存在数据缺失&#xff0c;不完整以及极端异常值等问题&#xff0c;对于我们的分析和建模影响很多。 对于我…

Git分布式版本控制系统——Git常用命令(二)

五、Git常用命令————分支操作 同一个仓库可以有多个分支&#xff0c;各个分支相互独立&#xff0c;互不干扰 分支的相关命令&#xff0c;具体如下&#xff1a; git branch 查看分支 git branch [name] 创建分支&#x…

20240409在全志H3平台的Nano Pi NEO CORE开发板上运行Ubuntu Core16.04时跑通4G模块EC200A-CN【PPP模式】

20240409在全志H3平台的Nano Pi NEO CORE开发板上运行Ubuntu Core16.04时跑通4G模块EC200A-CN【PPP模式】 2024/4/9 14:25 【不建议使用ppp模式&#xff0c;功耗大&#xff0c;貌似更过分的&#xff01;网速还低&#xff01;】 【唯一的优点&#xff1a;ppp模式下是通过脚本配置…

降额的秘密——不要挑战datasheet!

原文来自微信公众号&#xff1a;工程师看海&#xff0c;与我联系&#xff1a;chunhou0820 看海原创视频教程&#xff1a;《运放秘籍》 大家好&#xff0c;我是工程师看海。 什么是降额设计&#xff1f;我们为什么要降额&#xff1f; 额指的是额定工作状态&#xff0c;降额就是…

CSS特效---HTML+CSS实现3D旋转卡片

1、演示 2、一切尽在代码中 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>Document</title&…

Ubuntu无网络标识的解决方法

1.出现的情况的特点 2.解决办法 2.1 进入root并输入密码 sudo su 2.2 更新NetworkManager的配置 得先有gedit或者vim&#xff0c;两个随意一个&#xff0c;这里用的gedit&#xff0c;没有就先弄gedit&#xff0c;有的话直接下一步 apt-get install gedit 或者vim apt-get ins…

Excel中输入数字会改变怎么办?

一、数字显示不全&#xff0c;以“#”号代替 随着列宽的缩小&#xff0c;数字逐渐被“#”号代替&#xff08;首先数字的格式是“数值型&#xff0c;且只有整数”&#xff09; 原因分析&#xff1a;单元格中的数字无法完全显示&#xff0c;Excel会自动用“#”号填充剩余的空间 解…

【数据结构】07查找

查找 1. 基本概念2. 顺序表查找2.1 顺序查找2.2 顺序查找优化-哨兵 3. 有序表查找3.1 折半查找&#xff08;二分查找&#xff09; 4. 分块查找&#xff08;索引顺序查找&#xff09;5. Hash表&#xff08;散列表&#xff09;5.1 散列函数的设计5.2 代码实现5.2.1 初始化Hash表5…

【Python】面向对象(专版提升2)

面向对象 1. 概述1.1面向过程1.2 面向对象 2. 类和对象2.1 语法2.1.1 定义类2.1.2 实例化对象 2.2 实例成员2.2.1 实例变量2.2.2 实例方法2.2.3 跨类调用 3. 三大特征3.1 封装3.1.1 数据角度3.1.2 行为角度3.1.3 案例:信息管理系统3.1.3.1 需求3.1.3.2 分析3.1.3.3 设计 3.2 继…

照片分辨率怎么调?一键修改图片dpi

当我们需要通过电子邮件、社交媒体、即时消息或在线存储服务共享图片时&#xff0c;较高分辨率的图片文件可能会占用更多的存储空间和传输时间。通过修改图片分辨率&#xff0c;您可以减小文件大小&#xff0c;提高传输速度&#xff0c;并确保照片在网络共享和传输过程中的顺利…

gpu服务器与cpu服务器的区别在哪?

GPU服务器与CPU服务器的区别主要体现在处理能力、应用场景、能源消耗和成本等方面。 处理能力&#xff1a;CPU&#xff08;中央处理器&#xff09;是计算机的“大脑”&#xff0c;负责执行指令和处理数据&#xff0c;它的设计注重于逻辑运算和串行处理能力。而GPU&#xff08;…

隐私计算实训营第九讲-隐语多方安全计算在安全核对的行业实践

隐私计算实训营第九讲-隐语多方安全计算在安全核对的行业实践 文章目录 隐私计算实训营第九讲-隐语多方安全计算在安全核对的行业实践1.业务背景&#xff1a;安全核对产生的土壤1.1相关政策出台1.2 数据差异的来源 2.产品方案&#xff1a;从试点到规模化的路3.技术共建&#xf…

c++ 指针总结

概述 内存地址 在计算机内存中&#xff0c;每个存储单元都有一个唯一的地址(内存编号)。通俗理解&#xff0c;内存就是房间&#xff0c;地址就是门牌号 指针和指针变量 指针&#xff08;Pointer&#xff09;是一种特殊的变量类型&#xff0c;它用于存储内存地址。指针的实质…