Harmony鸿蒙南向驱动开发-UART接口使用

功能简介

UART指异步收发传输器(Universal Asynchronous Receiver/Transmitter),是通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输。

两个UART设备的连接示意图如下,UART与其他模块一般用2线(图1)或4线(图2)相连,它们分别是:

  • TX:发送数据端,和对端的RX相连。

  • RX:接收数据端,和对端的TX相连。

  • RTS:发送请求信号,用于指示本设备是否准备好,可接受数据,和对端CTS相连。

  • CTS:允许发送信号,用于判断是否可以向对端发送数据,和对端RTS相连。

图 1 2线UART设备连接示意图

2线UART设备连接示意图

图 2 4线UART设备连接示意图

4线UART设备连接示意图

UART通信之前,收发双方需要约定好一些参数:波特率、数据格式(起始位、数据位、校验位、停止位)等。通信过程中,UART通过TX发送给对端数据,通过RX接收对端发送的数据。当UART接收缓存达到预定的门限值时,RTS变为不可发送数据,对端的CTS检测到不可发送数据,则停止发送数据。

UART接口定义了操作UART端口的通用方法集合,包括:

  • 打开/关闭UART设备

  • 读写数据

  • 设置/获取UART设备波特率

  • 设置/获取UART设备属性

基本概念

  • 异步通信

    异步通信中,数据通常以字符或者字节为单位组成字符帧传送。字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。异步通信以一个字符为传输单位,通信中两个字符间的时间间隔是不固定的,然而在同一个字符中的两个相邻位代码间的时间间隔是固定的。

  • 全双工传输(Full Duplex)

    此通信模式允许数据在两个方向上同时传输,它在能力上相当于两个单工通信方式的结合。全双工可以同时进行信号的双向传输。

运作机制

在HDF框架中,UART接口适配模式采用独立服务模式(如图3所示)。在这种模式下,每一个设备对象会独立发布一个设备服务来处理外部访问,设备管理器收到API的访问请求之后,通过提取该请求的参数,达到调用实际设备对象的相应内部方法的目的。独立服务模式可以直接借助HDF设备管理器的服务管理能力,但需要为每个设备单独配置设备节点,增加内存占用。

独立服务模式下,核心层不会统一发布一个服务供上层使用,因此这种模式下驱动要为每个控制器发布一个服务,具体表现为:

  • 驱动适配者需要实现HdfDriverEntry的Bind钩子函数以绑定服务。

  • device_info.hcs文件中deviceNode的policy字段为1或2,不能为0。

UART模块各分层作用:

  • 接口层提供打开UART设备、UART设备读取指定长度数据、UART设备写入指定长度数据、设置UART设备波特率、获取设UART设备波特率、设置UART设备属性、获取UART设备波特率、设置UART设备传输模式、关闭UART设备的接口。

  • 核心层主要提供UART控制器的创建、移除以及管理的能力,通过钩子函数与适配层交互。

  • 适配层主要是将钩子函数的功能实例化,实现具体的功能。

图 3 UART独立服务模式结构图

UART独立服务模式结构图

约束与限制

UART模块UartSetTransMode接口设置传输模式在Linux中不支持,仅为空实现。

使用指导

场景介绍

UART模块应用比较广泛,主要用于实现设备之间的低速串行通信,例如输出打印信息,当然也可以外接各种模块,如GPS、蓝牙等。

接口说明

UART模块提供的主要接口如表1所示,具体API详见//drivers/hdf_core/framework/include/platform/uart_if.h。

表 1 UART驱动API接口功能介绍

接口名接口描述
DevHandle UartOpen(uint32_t port)UART获取设备句柄
void UartClose(DevHandle handle)UART释放设备句柄
int32_t UartRead(DevHandle handle, uint8_t *data, uint32_t size)从UART设备中读取指定长度的数据
int32_t UartWrite(DevHandle handle, uint8_t *data, uint32_t size)向UART设备中写入指定长度的数据
int32_t UartGetBaud(DevHandle handle, uint32_t *baudRate)UART获取波特率
int32_t UartSetBaud(DevHandle handle, uint32_t baudRate)UART设置波特率
int32_t UartGetAttribute(DevHandle handle, struct UartAttribute *attribute)UART获取设备属性
int32_t UartSetAttribute(DevHandle handle, struct UartAttribute *attribute)UART设置设备属性
int32_t UartSetTransMode(DevHandle handle, enum UartTransMode mode)UART设置传输模式

说明:
本文涉及的UART所有接口,支持内核态及用户态使用。

开发步骤

使用UART的一般流程如下图所示。

图 4 UART使用流程图

UART使用流程图

获取UART设备句柄

在使用UART进行通信时,首先要调用UartOpen获取UART设备句柄,该函数会返回指定端口号的UART设备句柄。

DevHandle UartOpen(uint32_t port);

表 2 UartOpen参数和返回值描述

参数参数描述
portuint32_t类型,UART设备号
返回值返回值描述
NULL获取UART设备句柄失败
设备句柄UART设备句柄

假设系统中的UART端口号为1,获取该UART设备句柄的示例如下:

DevHandle handle = NULL;    // UART设备句柄
uint32_t port = 1;          // UART设备端口号

handle = UartOpen(port);
if (handle == NULL) {
    HDF_LOGE("UartOpen: open uart_%u failed!\n", port);
    return;
}
UART设置波特率

在通信之前,需要设置UART的波特率,设置波特率的函数如下所示:

int32_t UartSetBaud(DevHandle handle, uint32_t baudRate);

表 3 UartSetBaud参数和返回值描述

参数参数描述
handleDevHandle类型,UART设备句柄
baudRateuint32_t类型,待设置的波特率值
返回值返回值描述
HDF_SUCCESSUART设置波特率成功
负数UART设置波特率失败

假设需要设置的UART波特率为9600,设置波特率的实例如下:

int32_t ret;

ret = UartSetBaud(handle, 9600);    // 设置UART波特率
if (ret != HDF_SUCCESS) {
    HDF_LOGE("UartSetBaud: failed, ret %d\n", ret);
    return ret;
}
UART获取波特率

设置UART的波特率后,可以通过获取波特率接口来查看UART当前的波特率,获取波特率的函数如下所示:

int32_t UartGetBaud(DevHandle handle, uint32_t *baudRate);

表 4 UartGetBaud参数和返回值描述

参数参数描述
handleDevHandle类型,UART设备句柄
baudRateuint32_t类型指针,用于接收波特率的值
返回值返回值描述
HDF_SUCCESSUART获取波特率成功
负数UART获取波特率失败

获取波特率的实例如下:

int32_t ret;
uint32_t baudRate;

ret = UartGetBaud(handle, &baudRate);    // 获取UART波特率
if (ret != HDF_SUCCESS) {
    HDF_LOGE("UartGetBaud: failed, ret %d\n", ret);
    return ret;
}
UART设置设备属性

在通信之前,需要设置UART的设备属性,设置设备属性的函数如下所示:

int32_t UartSetAttribute(DevHandle handle, struct UartAttribute *attribute);

表 5 UartSetAttribute参数和返回值描述

参数参数描述
handleDevHandle类型,UART设备句柄
attribute结构体指针,待设置的设备属性
返回值返回值描述
HDF_SUCCESSUART设置设备属性成功
负数UART设置设备属性失败

设置UART的设备属性的实例如下:

int32_t ret;
struct UartAttribute attribute;

attribute.dataBits = UART_ATTR_DATABIT_7;     // UART传输数据位宽,一次传输7个bit
attribute.parity = UART_ATTR_PARITY_NONE;     // UART传输数据无校检
attribute.stopBits = UART_ATTR_STOPBIT_1;     // UART传输数据停止位为1位
attribute.rts = UART_ATTR_RTS_DIS;            // UART禁用RTS
attribute.cts = UART_ATTR_CTS_DIS;            // UART禁用CTS
attribute.fifoRxEn = UART_ATTR_RX_FIFO_EN;    // UART使能RX FIFO
attribute.fifoTxEn = UART_ATTR_TX_FIFO_EN;    // UART使能TX FIFO

ret = UartSetAttribute(handle, &attribute);   // 设置UART设备属性
if (ret != HDF_SUCCESS) {
    HDF_LOGE("UartSetAttribute: failed, ret %d\n", ret);
turn ret;
}
UART获取设备属性

设置UART的设备属性后,可以通过获取设备属性接口来查看UART当前的设备属性,获取设备属性的函数如下所示:

int32_t UartGetAttribute(DevHandle handle, struct UartAttribute *attribute);

表 6 UartGetAttribute参数和返回值描述

参数参数描述
handleDevHandle类型,UART设备句柄
attribute结构体指针,接收UART设备属性的指针
返回值返回值描述
HDF_SUCCESSUART获取设备属性成功
负数UART获取设备属性失败

获取UART的设备属性的实例如下:

int32_t ret;
struct UartAttribute attribute;

ret = UartGetAttribute(handle, &attribute);    // 获取UART设备属性
if (ret != HDF_SUCCESS) {
    HDF_LOGE("UartGetAttribute: failed, ret %d\n", ret);
    return ret;
}
设置UART传输模式

在通信之前,需要设置UART的传输模式,设置传输模式的函数如下所示:

int32_t UartSetTransMode(DevHandle handle, enum UartTransMode mode);

表 7 UartSetTransMode参数和返回值描述

参数参数描述
handleDevHandle类型,UART设备句柄
mode枚举类型,待设置的传输模式
返回值返回值描述
HDF_SUCCESSUART设置传输模式成功
负数UART设置传输模式失败

假设需要设置的UART传输模式为UART_MODE_RD_BLOCK,设置传输模式的实例如下:

int32_t ret;

ret = UartSetTransMode(handle, UART_MODE_RD_BLOCK);    // 设置UART传输模式
if (ret != HDF_SUCCESS) {
    HDF_LOGE("UartSetTransMode: failed, ret %d\n", ret);
    return ret;
}
向UART设备写入指定长度的数据

对应的接口函数如下所示:

int32_t UartWrite(DevHandle handle, uint8_t *data, uint32_t size);

表 8 UartWrite参数和返回值描述

参数参数描述
handleDevHandle类型,UART设备句柄
datauint8_t类型指针,待写入数据的
sizeuint32_t类型,待写入数据的长度
返回值返回值描述
HDF_SUCCESSUART写数据成功
负数UART写数据失败

写入指定长度数据的实例如下:

int32_t ret;
uint8_t wbuff[5] = {1, 2, 3, 4, 5};

ret = UartWrite(handle, wbuff, 5);    // 向UART设备写入指定长度的数据
if (ret != HDF_SUCCESS) {
    HDF_LOGE("UartWrite: failed, ret %d\n", ret);
    return ret;
}
从UART设备中读取指定长度的数据

对应的接口函数如下所示:

int32_t UartRead(DevHandle handle, uint8_t *data, uint32_t size);

表 9 UartRead参数和返回值描述

参数参数描述
handleDevHandle类型,UART设备句柄
datauint8_t类型指针,接收读取数据
sizeuint32_t类型,待读取数据的长度
返回值返回值描述
非负数UART读取到的数据长度
负数UART读取数据失败

读取指定长度数据的实例如下:

int32_t ret;
uint8_t rbuff[5] = {0};

ret = UartRead(handle, rbuff, 5);    // 从UART设备读取指定长度的数据
if (ret < 0) {
    HDF_LOGE("UartRead: failed, ret %d\n", ret);
	return ret;
}

注意: UART返回值为非负值,表示UART读取成功。若返回值等于0,表示UART无有效数据可以读取。若返回值大于0,表示实际读取到的数据长度,该长度小于或等于传入的参数size的大小,并且不超过当前正在使用的UART控制器规定的最大单次读取数据长度的值。

销毁UART设备句柄

UART通信完成之后,需要销毁UART设备句柄,函数如下所示:

void UartClose(DevHandle handle);

该函数会释放申请的资源。

表 10 UartClose参数和返回值描述

参数参数描述
handleUART设备句柄

销毁UART设备句柄的实例如下:

UartClose(handle);    // 销毁UART设备句柄

使用实例

下面将基于Hi3516DV300开发板展示使用UART完整操作,步骤主要如下:

  1. 传入UART端口号num,打开端口号对应的UART设备并获得UART设备句柄。

  2. 通过UART设备句柄及设置的波特率,设置UART设备的波特率。

  3. 通过UART设备句柄及待获取的波特率,获取UART设备的波特率。

  4. 通过UART设备句柄及待设置的设备属性,设置UART设备的设备属性。

  5. 通过UART设备句柄及待获取的设备属性,获取UART设备的设备属性。

  6. 通过UART设备句柄及待设置的传输模式,设置UART设备的传输模式。

  7. 通过UART设备句柄及待传输的数据及大小,传输指定长度的数据。

  8. 通过UART设备句柄及待接收的数据及大小,接收指定长度的数据。

  9. 通过UART设备句柄,关闭UART设备。

#include "hdf_log.h"
#include "uart_if.h"

static int32_t UartTestSample(void)
{
    int32_t ret;
    uint32_t port;
    uint32_t baud;
    DevHandle handle = NULL;
    uint8_t wbuff[5] = { 1, 2, 3, 4, 5 };
    uint8_t rbuff[5] = { 0 };
    struct UartAttribute attribute;

    attribute.dataBits = UART_ATTR_DATABIT_7;                  // UART传输数据位宽,一次传输7个bit
    attribute.parity = UART_ATTR_PARITY_NONE;                  // UART传输数据无校检
    attribute.stopBits = UART_ATTR_STOPBIT_1;                  // UART传输数据停止位为1位
    attribute.rts = UART_ATTR_RTS_DIS;                         // UART禁用RTS
    attribute.cts = UART_ATTR_CTS_DIS;                         // UART禁用CTS
    attribute.fifoRxEn = UART_ATTR_RX_FIFO_EN;                 // UART使能RX FIFO
    attribute.fifoTxEn = UART_ATTR_TX_FIFO_EN;                 // UART使能TX FIFO

    port = 1;                                                  // UART设备端口号,要填写实际平台上的端口号

    handle = UartOpen(port);                                   // 获取UART设备句柄
    if (handle == NULL) {
        HDF_LOGE("UartOpen: open uart_%u failed!\n", port);
        return HDF_FAILURE;
    }

    ret = UartSetBaud(handle, 9600);                           // 设置UART波特率为9600
    if (ret != HDF_SUCCESS) {
        HDF_LOGE("UartSetBaud: set baud failed, ret %d\n", ret);
        goto ERR;
    }

    ret = UartGetBaud(handle, &baud);                          // 获取UART波特率
    if (ret != HDF_SUCCESS) {
        HDF_LOGE("UartGetBaud: get baud failed, ret %d\n", ret);
        goto ERR;
    }

    ret = UartSetAttribute(handle, &attribute);                // 设置UART设备属性
    if (ret != HDF_SUCCESS) {
        HDF_LOGE("UartSetAttribute: set attribute failed, ret %d\n", ret);
        goto ERR;
    }

    ret = UartGetAttribute(handle, &attribute);                // 获取UART设备属性
    if (ret != HDF_SUCCESS) {
        HDF_LOGE("UartGetAttribute: get attribute failed, ret %d\n", ret);
        goto ERR;
    }

    ret = UartSetTransMode(handle, UART_MODE_RD_NONBLOCK);     // 设置UART传输模式为非阻塞模式
    if (ret != HDF_SUCCESS) {
        HDF_LOGE("UartSetTransMode: set trans mode failed, ret %d\n", ret);
        goto ERR;
    }

    ret = UartWrite(handle, wbuff, 5);                         // 向UART设备写入5字节的数据
    if (ret != HDF_SUCCESS) {
        HDF_LOGE("UartWrite: write data failed, ret %d\n", ret);
        goto ERR;
    }

    ret = UartRead(handle, rbuff, 5);                          // 从UART设备读取5字节的数据
    if (ret < 0) {
        HDF_LOGE("UartRead: read data failed, ret %d\n", ret);
        goto ERR;
    }
    HDF_LOGI("%s: function tests end, %d", __func__, ret);
ERR:
    UartClose(handle);                                         // 销毁UART设备句柄
    return ret;
}

最后

有很多小伙伴不知道学习哪些鸿蒙开发技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?而且学习时频繁踩坑,最终浪费大量时间。所以有一份实用的鸿蒙(HarmonyOS NEXT)资料用来跟着学习是非常有必要的。 

这份鸿蒙(HarmonyOS NEXT)资料包含了鸿蒙开发必掌握的核心知识要点,内容包含了ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、音频、视频、WebGL、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、Harmony南向开发、鸿蒙项目实战等等)鸿蒙(HarmonyOS NEXT)技术知识点。

希望这一份鸿蒙学习资料能够给大家带来帮助,有需要的小伙伴自行领取,限时开源,先到先得~无套路领取!!

获取这份完整版高清学习路线,请点击→纯血版全套鸿蒙HarmonyOS学习资料

鸿蒙(HarmonyOS NEXT)最新学习路线

  •  HarmonOS基础技能

  • HarmonOS就业必备技能 
  •  HarmonOS多媒体技术

  • 鸿蒙NaPi组件进阶

  • HarmonOS高级技能

  • 初识HarmonOS内核 
  • 实战就业级设备开发

有了路线图,怎么能没有学习资料呢,小编也准备了一份联合鸿蒙官方发布笔记整理收纳的一套系统性的鸿蒙(OpenHarmony )学习手册(共计1236页)鸿蒙(OpenHarmony )开发入门教学视频,内容包含:ArkTS、ArkUI、Web开发、应用模型、资源分类…等知识点。

获取以上完整版高清学习路线,请点击→纯血版全套鸿蒙HarmonyOS学习资料

《鸿蒙 (OpenHarmony)开发入门教学视频》

《鸿蒙生态应用开发V2.0白皮书》

图片

《鸿蒙 (OpenHarmony)开发基础到实战手册》

OpenHarmony北向、南向开发环境搭建

图片

 《鸿蒙开发基础》

  • ArkTS语言
  • 安装DevEco Studio
  • 运用你的第一个ArkTS应用
  • ArkUI声明式UI开发
  • .……

图片

 《鸿蒙开发进阶》

  • Stage模型入门
  • 网络管理
  • 数据管理
  • 电话服务
  • 分布式应用开发
  • 通知与窗口管理
  • 多媒体技术
  • 安全技能
  • 任务管理
  • WebGL
  • 国际化开发
  • 应用测试
  • DFX面向未来设计
  • 鸿蒙系统移植和裁剪定制
  • ……

图片

《鸿蒙进阶实战》

  • ArkTS实践
  • UIAbility应用
  • 网络案例
  • ……

图片

 获取以上完整鸿蒙HarmonyOS学习资料,请点击→纯血版全套鸿蒙HarmonyOS学习资料

总结

总的来说,华为鸿蒙不再兼容安卓,对中年程序员来说是一个挑战,也是一个机会。只有积极应对变化,不断学习和提升自己,他们才能在这个变革的时代中立于不败之地。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/539267.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【拓展技术】——AutoDL服务器训练Pycharm使用注意点Pycharm配置AutoDL

一、AutoDL服务器模型训练 AutoDL是一个为研究人员、开发者和企业提供的平台&#xff0c;它致力于提供一个高效、可靠和易用的环境&#xff0c;以支持复杂的计算任务和AI模型的部署&#xff1a; 高效的并行计算资源&#xff1a;AutoDL拥有强大的计算集群和高性能的计算节点&a…

自定义协议:序列化与反序列化的深度解析与实践

⭐小白苦学IT的博客主页⭐ ⭐初学者必看&#xff1a;Linux操作系统入门⭐ ⭐代码仓库&#xff1a;Linux代码仓库⭐ ❤关注我一起讨论和学习Linux系统 1.引言 协议是一种 "约定". socket api的接口, 在读写数据时, 都是按 "字符串" 的方式来发送接收的. 如…

代码随想录--数组--长度最小的子数组

题目 给定一个含有 n 个正整数的数组和一个正整数 s &#xff0c;找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组&#xff0c;并返回其长度。如果不存在符合条件的子数组&#xff0c;返回 0。 示例&#xff1a; 输入&#xff1a;s 7, nums [2,3,1,2,4,3] 输出&#…

【opencv】示例-image_alignment.cpp 利用ECC 算法进行图像对齐

affine imshow("image", target_image); imshow("template", template_image); imshow("warped image", warped_image); imshow("error (black: no error)", abs(errorImage) * 255 / max_of_error); homography 这段代码是一个利用EC…

秦朗丢寒假作业系摆拍 博主被处罚

大家好&#xff01; 我是老洪&#xff0c;刚看到秦朗丢寒假作业系摆拍博主被处罚。 据央视财经媒体报道&#xff0c;近期&#xff0c;“秦朗丢寒假作业”事件被证实为自导自编的摆拍视频。 图片来源央视财经公众号截图 该博主与同事薛某&#xff0c;为了吸引更多的粉丝和流量&a…

第七周周一人工智能导论预告

第一讲 人工智能概述 1.1 简介 1.2人工智能的概念 1.3 人工智能的发展简史 1.4 人工智能研究的基本内容 第一讲 人工智能概述单元测试 第二讲 一阶谓词逻辑表示法 2.1 命题逻辑 2.2 谓词逻辑 2.3 一阶谓词逻辑知识表示法 第二讲 一阶谓词逻辑知识表示法单元测试 第…

js解密心得,记录一次抓包vue解密过程

背景 有个抓包结果被加密了 1、寻找入口&#xff0c;打断点 先正常请求一次&#xff0c;找到需要的请求接口。 寻找入口&#xff0c;需要重点关注几个关键字&#xff1a;new Promise 、new XMLHttpRequest、onreadystatechange、.interceptors.response.use、.interceptors.r…

JVM与GC原理

JVM运行流程 Java 虚拟机&#xff08;Java Virtual Machine&#xff0c;JVM&#xff09;是 Java 平台的核心组件之一&#xff0c;它是一个在实际硬件和操作系统上模拟运行 Java 字节码的虚拟计算机 Java 程序被执行的顺序通常包括以下几个步骤&#xff1a; 编辑&#xff08;E…

测试过程和测试生命周期

软件测试过程是一系列有计划、有组织的活动&#xff0c;旨在识别和解决软件产品中的问题。这个过程通常包括多个阶段&#xff0c;每个阶段都有其特定的目标和方法。 需求分析&#xff1a; 分析软件需求和测试需求&#xff0c;确定测试的目标和范围。理解用户需求和业务目标&…

给现有rabbitmq集群添加rabbitmq节点

现有的&#xff1a;10.2.59.216 rabbit-node1 10.2.59.217 rabbit-node2 新增 10.2.59.199 rabbit-node3 1、分别到官网下载erlang、rabbitmq安装包&#xff0c;我得版本跟现有集群保持一致。 erlang安装包&#xff1a;otp_src_22.0.tar.gz rabbitmq安装包&#xff1…

C++实现一个自定义字符串类(string)

本博客将详细介绍如何在C中实现一个自定义的字符串类 string&#xff0c;这个类模仿了标准库中 std::string 的关键功能。这个过程将涵盖从声明到定义的每一步&#xff0c;重点介绍内存管理、操作符重载以及提供一些关键的实现细节。 首先&#xff1a;我们采用函数的声明与定义…

ArcGIS Pro 3D建模简明教程

在本文中&#xff0c;我讲述了我最近一直在探索的在 ArcGIS Pro 中设计 3D 模型的过程。 我的目标是尽可能避免与其他软件交互&#xff08;即使是专门用于 3D 建模的软件&#xff09;&#xff0c;并利用 Pro 可以提供的可能性。 这个短暂的旅程分为三个不同的阶段&#xff1a;…

【SGDR】《SGDR:Stochastic Gradient Descent with Warm Restarts》

arXiv-2016 code: https://github.com/loshchil/SGDR/blob/master/SGDR_WRNs.py 文章目录 1 Background and Motivation2 Related Work3 Advantages / Contributions4 Method5 Experiments5.1 Datasets and Metric5.2 Single-Model Results5.3 Ensemble Results5.4 Experiment…

kali工具----枚举工具

一、枚举工具 枚举是一类程序&#xff0c;它允许用户从一个网络中收集某一类的所有相关信息。本节将介绍DNS枚举和SNMP枚举技术。DNS枚举可以收集本地所有DNS服务和相关条目。DNS枚举可以帮助用户收集目标组织的关键信息&#xff0c;如用户名、计算机名和IP地址等&#xff0c;…

HarmonyOS实战开发-视频播放、如何实现了视频播放、暂停、调节倍速、切换视频的功能。

介绍 视频播放的主要工作是将视频数据转码并输出到设备进行播放&#xff0c;同时管理播放任务。本文将对视频播放全流程、视频切换、视频循环播放等场景开发进行介绍说明。 本示例主要展示了播放本地视频和网络视频相关功能,使用 ohos.multimedia.media,ohos.resourceManager,…

Python 全栈系列239 使用消息队列完成分布式任务

说明 在Python - 深度学习系列32 - glm2接口部署实践提到&#xff0c;通过部署本地化大模型来完成特定的任务。 由于大模型的部署依赖显卡&#xff0c;且常规量级的任务需要大量的worker支持&#xff0c;从成本考虑&#xff0c;租用算力机是比较经济的。由于任务是属于超高计…

【opencv】示例-inpaint.cpp 图像修复是通过填充损坏图像部分从而修复这些损坏的过程...

原始图像 这段代码展示了一个使用OpenCV库进行图像修复的例子。它首先包含了处理图像编码、解码、显示、处理和照片处理所必要的OpenCV模块的头文件。然后利用cv和std命名空间下的类和方法。通过定义一个鼠标回调函数onMouse来处理图像上的绘图操作&#xff0c;并通过主函数mai…

React添加到现有项目

1.检查现有项目的根目录下是否有package.json文件 如果没有&#xff0c;则在项目的根目录下初始化一个package.json配置文件 2.在根目录下安装react和react-dom依赖 npm install --save react react-dom react-scripts安装成功后&#xff0c;react、react-dom以及react-scr…

汽车制造业PMC组态应用最佳实践

01案例及行业介绍 汽车制造工业是我国国民经济的重要支柱产业&#xff0c;汽车制造工厂一般包含冲压、焊装、涂装、总装四大车间。每辆汽车的生产过程被分解成很多加工任务下发给各个车间进行完成。车辆从冲压车间开始到总装车间结束一直进行不同类型的工序加工。 PMC即生产控…

Sarson Funds 在 Casper 测试网推出稳定币 csprUSD

Sarson Funds 与 Casper Association 合作&#xff0c;在 Casper Network &#xff08;CSPR&#xff09;测试网上推出了 csprUSD 稳定币。 作为最新的法币背书型稳定币&#xff0c;csprUSD 进入了数字货币市场&#xff0c;与 Ripple 和 Cardano 等组织近期推出的产品定位一致。…