软件杯 深度学习人体语义分割在弹幕防遮挡上的实现 - python

文章目录

  • 1 前言
  • 1 课题背景
  • 2 技术原理和方法
    • 2.1基本原理
    • 2.2 技术选型和方法
  • 3 实例分割
  • 4 实现效果
  • 5 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习人体语义分割在弹幕防遮挡上的应用

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

弹幕是显示在视频上的评论,可以以滚动、停留甚至更多动作特效方式出现在视频上,是观看视频的人发送的简短评论。

各大视频网站目前都有弹幕功能,之家也于2020年5月正式上线视频弹幕功能,受到了广大网友的喜爱,大家在观看视频的同时,也能通过弹幕进行互动。

但密集的弹幕,遮挡视频画面,严重影响用户观看体验,如何解决?
在这里插入图片描述
查阅了相关视频网站,发现B站推出了一种蒙版弹幕技术,可以让弹幕自动躲避人形区域,达到弹幕不挡人的效果。
B站视频弹幕不挡人的效果

在这里插入图片描述

2 技术原理和方法

2.1基本原理

通过AI计算机视觉的技术,对视频内容进行分析,并将之前已经定义好的“视频主体内容”进行识别,生成蒙版并分发给客户端后,让客户端利用 CSS3
的特性进行渲染从而达成最终的效果。这样就形成了我们最终看到的,“不挡脸”弹幕效果。

实现方法就正如 PS
中的“蒙版“一样,实心区域允许,空白区域拒绝,从而达到弹幕不挡人的效果。而技术的核心就在蒙版的生成上,所以将这个功能称之为“蒙版弹幕”。

2.2 技术选型和方法

1、提取视频帧画面。对音视频的处理,大家一般都会想到FFmpeg组件,我们也是使用FFmpeg组件提取每帧的视频画面,使用的是PyAV组件,PyAV是FFmpeg封装,能够灵活的编解码视频和音频,并且支持Python常用的数据格式(如numpy)。

2、识别视频帧画面人像区域。解决方案:使用AI计算机视觉的实例分割技术,可以识别视频帧画面的人像区域。

3、AI框架:目前市面上的AI框架,主要以TensorFlow,PyTorch最流行。

  • TensorFlow :出身豪门的工业界霸主,由Google Brain团队研发。具有如下优点:支持多种编程语言;灵活的架构支持多GPU、分布式训练,跨平台运行能力强;自带 TensorBoard 组件,能可视化计算图,便于让用户实时监控观察训练过程;官方文档非常详尽,可查询资料众多;社区庞大,大量开发者活跃于此。
  • PyTorch :以动态图崛起的学术界宠儿,是基于 Torch 并由Facebook强力支持的python端的开源深度学习库。具有如下优点:简洁: PyTorch 在设计上更直观,追求尽量少的封装,建模过程透明,代码易于理解;易用:应用十分灵活,接口沿用 Torch ,契合用户思维,尽可能地让用户实现“所思即所得”,不过多顾虑框架本 PyTorch 。原因: TensorFlow 入门难度较大,学习门槛高,系统设计过于复杂;而 PyTorch 入门难度低,上手快,而且提供的功能也非常易用,预训练模型也非常多。

4、实例分割技术:实例分割(Instance Segmentation)是视觉经典四个任务中相对最难的一个,它既具备语义分割(Semantic
Segmentation)的特点,需要做到像素层面上的分类,也具备目标检测(Object
Detection)的一部分特点,即需要定位出不同实例,即使它们是同一种类。

3 实例分割

简介
实例分割已成为机器视觉研究中比较重要、复杂和具有挑战性的领域之一。为了预测对象类标签和特定于像素的对象实例掩码,它对各种图像中出现的对象实例的不同类进行本地化。实例分割的目的主要是帮助机器人,自动驾驶,监视等。

实例分割同时利用目标检测和语义分割的结果,通过目标检测提供的目标最高置信度类别的索引,将语义分割中目标对应的Mask抽取出来。实例分割顾名思义,就是把一个类别里具体的一个个对象(具体的一个个例子)分割出来。
在这里插入图片描述
Mask R-CNN算法
本项目使用Mask R-CNN算法来进行图像实例分割。
网络结构图:
在这里插入图片描述
Mask R-CNN,一个相对简单和灵活的实例分割模型。该模型通过目标检测进行了实例分割,同时生成了高质量的掩模。通常,Faster
R-CNN有一个用于识别物体边界框的分支。Mask R-CNN并行添加了一个对象蒙版预测分支作为改进。使用FPN主干的head架构如图所示。
在这里插入图片描述
关键代码



    ##利用不同的颜色为每个instance标注出mask,根据box的坐标在instance的周围画上矩形
    ##根据class_ids来寻找到对于的class_names。三个步骤中的任何一个都可以去掉,比如把mask部分
    ##去掉,那就只剩下box和label。同时可以筛选出class_ids从而显示制定类别的instance显示,下面
    ##这段就是用来显示人的,其实也就把人的id选出来,然后记录它们在输入ids中的相对位置,从而得到
    ##相对应的box与mask的准确顺序
    def display_instances_person(image, boxes, masks, class_ids, class_names,
                          scores=None, title="",
                          figsize=(16, 16), ax=None):
        """
        the funtion perform a role for displaying the persons who locate in the image
        boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
        masks: [height, width, num_instances]
        class_ids: [num_instances]
        class_names: list of class names of the dataset
        scores: (optional) confidence scores for each box
        figsize: (optional) the size of the image.
        """
        #compute the number of person
        temp = []
        for i, person in enumerate(class_ids):
            if person == 1:
                temp.append(i)
            else:
                pass
        person_number = len(temp)
        
        person_site = {}
        
        for i in range(person_number):
            person_site[i] = temp[i]


        NN = boxes.shape[0]   
        # Number of person'instances
        #N = boxes.shape[0]
        N = person_number
        if not N:
            print("\n*** No person to display *** \n")
        else:
           # assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]
            pass
     
        if not ax:
            _, ax = plt.subplots(1, figsize=figsize)
     
        # Generate random colors
        colors = random_colors(NN)
     
        # Show area outside image boundaries.
        height, width = image.shape[:2]
        ax.set_ylim(height + 10, -10)
        ax.set_xlim(-10, width + 10)
        ax.axis('off')
        ax.set_title(title)
     
        masked_image = image.astype(np.uint32).copy()
        for a in range(N):
            
            color = colors[a]
            i = person_site[a]

            # Bounding box
            if not np.any(boxes[i]):
                # Skip this instance. Has no bbox. Likely lost in image cropping.
                continue
            y1, x1, y2, x2 = boxes[i]
            p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
                                  alpha=0.7, linestyle="dashed",
                                  edgecolor=color, facecolor='none')
            ax.add_patch(p)
     
            # Label
            class_id = class_ids[i]
            score = scores[i] if scores is not None else None
            label = class_names[class_id]
            x = random.randint(x1, (x1 + x2) // 2)
            caption = "{} {:.3f}".format(label, score) if score else label
            ax.text(x1, y1 + 8, caption,
                    color='w', size=11, backgroundcolor="none")
            
             # Mask
            mask = masks[:, :, i]
            masked_image = apply_mask(masked_image, mask, color)
     
            # Mask Polygon
            # Pad to ensure proper polygons for masks that touch image edges.
            padded_mask = np.zeros(
                (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
            padded_mask[1:-1, 1:-1] = mask
            contours = find_contours(padded_mask, 0.5)
            for verts in contours:
                # Subtract the padding and flip (y, x) to (x, y)
                verts = np.fliplr(verts) - 1
                p = Polygon(verts, facecolor="none", edgecolor=color)
                ax.add_patch(p)
           
        ax.imshow(masked_image.astype(np.uint8))
        plt.show()


4 实现效果

原视频
在这里插入图片描述
生成帧蒙板
在这里插入图片描述
最终效果
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/538084.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python爬虫与API交互:如何爬取并解析JSON数据

目录 前言 一、什么是API和JSON数据 二、准备环境 三、发送API请求并获取数据 四、解析JSON数据 五、完整代码示例 六、总结 前言 随着互联网的发展,越来越多的网站提供了API接口,供开发者获取实时数据。在爬虫领域中,与API交互并解析…

快速实现一个Hibernate的例子

写第一个简单的Hibernate程序: 具体的开始第一个Hibernate程序之前: 找到jar包, hibernate 的核心包, mysql数据库的连接驱动包, junit测试包 ①创建Hibernate配置文件 ②创建持久化类 也是和数据库中数据表一一对应这个类 ③创建对象-关系映射文件 ④通过hibern…

【攻防世界】mfw(.git文件泄露)

首先进入题目环境,检查页面、页面源代码、以及URL: 发现页面无异常。 使用 dirsearch 扫描网站,检查是否存在可访问的文件或者文件泄露: 发现 可访问界面/templates/ 以及 .git文件泄露,故使用 GItHack 来查看泄露的 …

LeetCode题练习与总结:不同路径Ⅱ--63

一、题目描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。 现在考虑网格中有障碍物。那么从…

如何使用SQL注入工具?

前言 今天来讲讲SQL注入工具,sqlmap。如何使用它来一步步爆库。 sqlmap官方地址如下。 sqlmap: automatic SQL injection and database takeover tool 前期准备,需要先安装好docker、docker-compose。 一个运行的后端服务,用于写一个存在…

竞赛 图像识别-人脸识别与疲劳检测 - python opencv

文章目录 0 前言1 课题背景2 Dlib人脸识别2.1 简介2.2 Dlib优点2.3 相关代码2.4 人脸数据库2.5 人脸录入加识别效果 3 疲劳检测算法3.1 眼睛检测算法3.3 点头检测算法 4 PyQt54.1 简介4.2相关界面代码 5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是…

AI大模型创新交汇点:当AI遇见艺术

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …

【面试题】细说mysql中的各种锁

前言 作为一名IT从业人员,无论你是开发,测试还是运维,在面试的过程中,我们经常会被数据库,数据库中最经常被问到就是MySql。当面试官问MySql的时候经常会问道一个问题,”MySQL中有哪些锁?“当我…

NAPI 类对象导出及其生命周期管理(上)

1.NAPI 类对象导出 OpenHarmony NAPI提供了一种“包装”C 类和实例的方法,以便JS应用可以调用类的构造函数和方法。Node.js Node-API中关于导出类对象的内容, 1.1. NAPI导出类对象流程 通过napi_define_class定义一个JS类 它包含了与 C 类对应的构造函…

PandasAI的应用与实战解析(一):环境安装、运行demo

文章目录 1.源码包下载、明确依赖版本2.安装python依赖3.运行demo 本博客源码仓库地址:gitlab,本篇博客对应01分支python版本为3.10.x 什么是PandasAI?一句话总结的话,PandasAI就是一个结合了Pandas和AI的开源工具,更…

单链表和文件操作使用练习:通讯录

1. 项目文件组成(vs2022) 1. Contact.h和Contact.c分别为实现通讯录的头文件和源文件。 2. SList.h和SList.c分别为实现单链表的头文件和源文件。 3. test.c为测试用的源文件,用于调用通讯录提供的函数。 4. Contact.txt用于存储联系人信息。…

蓝桥杯 每日2题 day5

碎碎念:哦哈呦,到第二天也是哦哈哟,,学前缀和差分学了半天!day6堂堂连载! 0.单词分析 14.单词分析 - 蓝桥云课 (lanqiao.cn) 关于这题就差在input前加一个sorted,记录一下下。接下来就是用字…

【饿了么笔试题汇总】[全网首发]2024-04-12-饿了么春招笔试题-三语言题解(CPP/Python/Java)

🍭 大家好这里是KK爱Coding ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新饿了么近期的春秋招笔试题汇总~ 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢&#x…

决策树与随机森林实验报告(纯Python实现)

一、实验内容简介 该实验主要利用ID3算法和已有的数据建立决策树和随机森林,并利用决策树和随机森林来预测未知数据的值。本实验使用Python实现。 二、算法说明 下面介绍几个基础但很重要的概念: 决策树:决策树是在已知各种情况发生概率的…

如何恢复 iPhone 删除的照片?

照片是iPhone空间不足的主要原因,因此许多用户选择删除一些重复或不喜欢的图片来释放设备。然而,人们在清洁过程中不小心遗漏了自己喜欢的照片的情况很常见。如果你找不到这些珍贵的照片,你一定很难过。其实,您不必担心这个问题&a…

Android 纵向双选日历

这个日历的布局分两部分&#xff0c;一部分是显示星期几的LinearLayout&#xff0c;另外就是一个RecyclerView&#xff0c;负责纵向滚动了。 工具类&#xff1a; implementation com.blankj:utilcode:1.17.3上activity_calendar代码&#xff1a; <?xml version"1.0&…

【教资】总结经验篇

4月.12日概述 今天是2024年上半学期中小学出成绩的一天&#xff0c;查到成绩的那一刻是灰常让人激动的&#xff0c;很开心&#xff0c;特此记下此时的真实感受&#xff0c;我也没有去问别人怎么样&#xff0c;特此针对自己以记之&#xff0c;加上最近有点摆烂&#xff0c;所以…

重磅!李彦宏内部讲话曝光,百度AI闭源策略引爆争议!|TodayAI

最近&#xff0c;百度公司创始人、董事长兼CEO李彦宏的一次内部讲话内容被公之于众。在这次讲话中&#xff0c;李彦宏表达了几个与行业普遍看法相左的观点&#xff0c;尤其在开源与闭源策略的选择上&#xff0c;引发了业界的广泛关注和讨论。 李彦宏在讲话中明确指出了百度对开…

gitlab、jenkins安装及使用文档二

安装 jenkins IP地址操作系统服务版本192.168.75.137Rocky9.2jenkins 2.450-1.1 jdk 11.0.22 git 2.39.3192.168.75.138Rocky9.2gitlab-ce 16.10.0 结合上文 jenkins安装 前期准备&#xff1a; yum install -y epel-release yum -y install net-tools vim lrzsz wget…

git知识

如何将develop分支合并到master分支 #简单版 git checkout master git pull origin master git merge origin/develop # 解决可能的冲突并提交 git push origin master#复杂版 git checkout master # 拉取远程 master 分支的最新代码并合并到本地 git pull origin master # 拉…