基于python+Xception算法模型实现一个图像分类识别系统

一、目录

  • Xception介绍
  • 数据集处理模型训练
  • 模型评估
  • 项目扩展

二、Xception介绍

在计算机视觉领域,图像识别是一个非常重要的任务,其应用涵盖了人脸识别、物体检测、场景理解等众多领域。随着深度学习技术的发展,深度卷积神经网络(Convolutional Neural Networks,简称CNN)在图像识别任务上取得了巨大成功,其中Xception算法作为一种改进型CNN,被广泛应用于图像分类和特征提取任务。
本章节将重点介绍Xception算法的背景、原理及其在图像识别系统中的应用。我们将从基本概念出发,深入探讨Xception算法的核心思想和技术细节,帮助读者了解这一强大的图像识别算法。
Xception算法是由谷歌(Google)的研究团队提出的,其全称为“Extreme Inception”,意为“极端的Inception”。而Inception则是另一种深度学习模型,于2014年由谷歌提出,其目标是解决传统卷积神经网络中计算复杂度高的问题。Xception算法于2016年被提出,它在Inception的基础上进一步改进,通过深度分离卷积(Depthwise Separable Convolution)的方式,极大地减少了网络中的参数数量,提高了计算效率。
Xception算法在ILSVRC 2016图像分类挑战赛中取得了非常优秀的成绩,显示了其在图像分类任务上的强大能力。随后,Xception算法在各种图像识别任务中都被广泛使用,成为图像处理领域的重要算法之一。
Xception算法是基于深度分离卷积的改进型Inception网络。它的核心思想是将传统的Inception模块中的标准卷积操作替换为深度分离卷积。这样一来,Xception网络能够在减少参数数量的同时,保持对图像特征的有效提取。
Xception网络的整体结构与传统的卷积神经网络相似,包含多个堆叠的深度分离卷积模块和池化层。最后通常使用全局平均池化层将特征图转换为向量,再连接全连接层用于图像分类任务。
Xception算法在图像识别系统中得到了广泛的应用。由于其出色的特征提取能力和高效的计算性能,Xception网络在许多图像分类、目标检测和场景理解任务中都取得了优秀的结果。
在实际应用中,我们可以使用预训练的Xception模型,将其迁移到特定的图像识别任务中,从而避免从头开始训练网络,节省时间和计算资源。通过微调(Fine-tuning)预训练模型,我们可以在相对较少的数据上获得良好的图像识别性能。

三、模型训练预测

在本文中为了演示如何实现一个图像识别分类系统,通过选取了5种常见的水果数据集,其文件夹结构如下图所示。

image-20230730144258205

image-20230730144237520

在完成数据集的收集准备后,打开jupyter notebook平台,导入数据集通过以下代码可以计算出数据集的总图片数量。本次使用的数据集总图片约为400张。

import pathlib

data_dir = "./dataset/"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

然后通过构建算法模型,由于在TensorFlow中内置了Xception预训练模型,所以我们可以直接导入该模型。
image-20230730144311891
如上图所示,如果是第一次导入该模型,那么会将预训练模型先下载到本地计算机中。下面是使用代码。

model = tf.keras.applications.Xception(weights='imagenet', include_top=True)

这段代码是使用TensorFlow中的Keras模块来构建一个Xception模型,并加载预训练的权重。
让我们逐行解释代码的含义:

  1. import tensorflow as tf: 首先导入TensorFlow库,这是使用TensorFlow进行深度学习任务的标准操作。
  2. model = tf.keras.applications.Xception: 在这一行中,我们使用Keras中的applications模块来创建一个Xception模型。Keras的applications模块提供了许多已经预先定义好的深度学习模型,其中包括Xception模型。
  3. weights=‘imagenet’: 这个参数指定了模型加载的权重。'imagenet’表示加载在ImageNet数据集上预训练的权重。ImageNet是一个大规模的图像数据集,包含数百万张图像和数千个类别。在ImageNet上预训练的权重可以作为Xception模型的初始权重,使得模型具有较好的特征提取能力。
  4. include_top=True: 这个参数决定是否包含模型的顶部(Top)部分。在Xception模型中,顶部部分包含全局平均池化层和全连接层,用于图像分类任务。如果include_top=True,则会加载完整的Xception模型,包括顶部的分类部分;如果include_top=False,则只加载Xception的卷积部分,顶部的分类部分将被去除。

综上所述,这段代码的作用是创建一个使用ImageNet预训练权重的完整Xception模型,包括顶部的分类部分,可以直接用于图像分类任务。如果要进行其他任务,比如目标检测,可以将include_top参数设置为False,然后在模型的基础上添加适当的层来实现特定的任务。
然后开始对模型进行迭代训练,在本项目中指定了25轮迭代次数,其训练过程如下图所示。
image-20230730144322237

四、模型评估

根据上图的模型训练过程图可知,经过25论迭代后,模型在测试集上面的精度为0.98以上,该模型精度较高,具有一定实用性。然后通过打印LOSS图和ACC曲线图观察其变化情况。
image-20230730144337767
image-20230730144351769

五、项目扩展

在完成模型训练后,通过model.save方法保存模型为本地文件,然后就可以基于改模型开发出非常多的应用了,比如开发出API接口给别人调用等。

在本项目中基于Django框架开发了一个网页版的识别界面,在该网页界面系统中,用户可以点击鼠标上传一张图片,然后点击按钮进行检测。同时可以将相关识别的相关信息保存在数据库中,管理员通过登录后台可以查看所有的识别信息,为模型优化提供数据支持。

其效果如下所示
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
完整项目源码获取:https://www.yuque.com/ziwu/yygu3z/sr43e6q0wormmfpv

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/53767.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

哈工大计算机网络课程网络安全基本原理之:身份认证

哈工大计算机网络课程网络安全基本原理之:身份认证 在日常生活中,在很多场景下我们都需要对当前身份做认证,比如使用密码、人脸识别、指纹识别等,这些都是身份认证的常用方式。本节介绍的身份认证,是在计算机网络安全…

android 如何分析应用的内存(十三)——perfetto

android 如何分析应用的内存(十三) 本篇文章是native内存的最后一篇文章——perfetto perfetto简介 从2018年始,android开发者峰会正式推出perfetto工具。从此perfetto成为安卓最重要的工具之一。在2018年以前,android使用syst…

OpenHarmony开源鸿蒙学习入门 - 基于3.2Release 应用开发环境安装

OpenHarmony开源鸿蒙学习入门 - 基于3.2Release 应用开发环境安装 基于目前官方master主支,最新文档版本3.2Release,更新应用开发环境安装文档。 一、安装IDE: 1.IDE安装的系统要求 2.IDE下载官网链接(IDE下载链接) …

小红书2020校招测试开发后端笔试题卷三

//完全背包求组合数 #include <iostream> #include<vector> #include<set> #include<map> #include<algorithm> using namespace std; int value[300]; // vector<int>vis; // vector<int>vis1; map<vector<int>,int>m…

Tomcat的基本使用,如何用Maven创建Web项目、开发完成部署的Web项目

Tomcat 一、Tomcat简介二、Tomcat基本使用三、Maven创建Web项目3.1 Web项目结构3.2开发完成部署的Web项目3.3创建Maven Web项目3.3.1方式一3.3.2方式二&#xff08;个人推荐&#xff09; 总结 一、Tomcat简介 Web服务器&#xff1a; Web服务器是一个应用程序&#xff08;软件&…

深入探究Java面向对象的三大特征:封装、继承、多态

文章目录 1. 封装&#xff08;Encapsulation&#xff09;2. 继承&#xff08;Inheritance&#xff09;3. 多态&#xff08;Polymorphism&#xff09;结语 导语&#xff1a;Java是一门面向对象的编程语言&#xff0c;其核心思想是将现实世界中的事物抽象成对象&#xff0c;并通过…

PACS系统源码:支持三维重建功能、集成放射科管理RIS系统、图文报告编辑、打印、多级审核机制

PACS系统源码 PACS系统是以最新的IT技术为基础&#xff0c;遵循医疗卫生行业IHE/DICOM3.0和HL7标准&#xff0c;开发的多功能服务器和阅片系统。通过简单高性能的阅片功能&#xff0c;支持繁忙时的影像诊断业务&#xff0c;拥有保存影像的院内Web传输及离线影像等功能&#xf…

语义分割、转置卷积、风格迁移(第十二次组会)

TOC 语义分割 图像分割、实例分割 上采样、下采样 转置卷积 全卷积网络 风格迁移

网络安全 Day24-select高级用法和多表连接

select高级用法和多表连接 1. select 多子句单表高级实践1.1 select 多子句高级语法1.2 聚合函数1.3 group by 实践1.4 having 筛选1.5 order by 排序1.6 limit 2. 多表连接 1. select 多子句单表高级实践 1.1 select 多子句高级语法 where 和 having 区别是后者是分组后进行…

JAVASE---类和对象

1. 面向对象的初步认知 1.1 什么是面向对象 Java是一门纯面向对象的语言(Object Oriented Program&#xff0c;简称OOP)&#xff0c;在面向对象的世界里&#xff0c;一切皆为对象。面向对象是解决问题的一种思想&#xff0c;主要依靠对象之间的交互完成一件事情。用面向对象的…

测试开源C#人脸识别模块ViewFaceCore(5:质量检测和眼睛状态检测)

ViewFaceCore模块中的FaceQuality支持预测人脸质量&#xff0c;最初以为是预测人体体重&#xff0c;实际测试过程中才发现是评估人脸图片质量&#xff0c;主要调用Detect函数执行图片质量检测操作&#xff0c;其函数原型如下所示&#xff1a; //// 摘要:// 人脸质量评估///…

科普 | OSI模型

本文简要地介绍 OSI 模型 1’ 2’ 3。 更新&#xff1a;2023 / 7 / 23 科普 | OSI模型 术语节点链路协议网络拓扑 概念作用结构应用层表示层会话层传输层网络层数据链路层物理层 数据如何流动OSI 和TCP/IP 的对应关系和协议参考链接 术语 节点 节点&#xff08; Node &#…

canvas实现图片平移,缩放的例子

最近有个水印预览的功能&#xff0c;需要用到canvas 绘制&#xff0c;canvas用的不是很熟&#xff0c;配合chatAI 完成功能。 效果如下 代码如下 原先配置是响应式的&#xff0c;提出来了就不显示操作了&#xff0c;模拟值都写死的 界面给大家参考阅读。 <!DOCTYPE html…

element-tree-line el-tree 添加结构线 添加虚线

概览&#xff1a;给element组件添加上虚线&#xff0c;通过使用插件element-tree-line 参考连接&#xff1a; 参考别人的博客 安装插件&#xff1a; # npm npm install element-tree-line -S # yarn yarn add element-tree-line -S main.js全局注册引入插件&#xff1a; imp…

PCL点云处理之最小二乘空间直线拟合(3D) (二百零二)

PCL点云处理之最小二乘空间直线拟合(3D) (二百零二) 一、算法简介二、实现代码三、效果展示一、算法简介 对于空间中的这样一组点:大致呈直线分布,散乱分布在直线左右, 我们可采用最小二乘方法拟合直线,更进一步地,可以通过点到直线的投影,最终得到一组严格呈直线分布…

气象名词解释

文章目录 SAMPSAAMO SAM SAM(Southern Annualr Mode) 南半球环状模&#xff0c;是南半球大气环流和气候变异的一种重要现象。具有如下特点&#xff1a; 主要特点&#xff1a; 赤道附近环流&#xff1a;在 SAM 正相位期间&#xff0c;赤道附近的环流增强&#xff0c;称为正 SA…

使用多数据源dynamic-datasource-spring-boot-starter遇到的问题记录

记录使用多数据源dynamic-datasource-spring-boot-starter遇到的问题&#xff1a; 1、工程启动失败 缺少clickhouse连接驱动&#xff0c;引入对应的maven依赖 <!--ck连接驱动--><dependency><groupId>ru.yandex.clickhouse</groupId><artifactId>…

vue3搭建Arco design UI框架

技术&#xff1a;Vue3.2.40 UI框架&#xff1a;Arco design 2.44.7 需要安装:yarn 1.22.19 和npm 8.19.4 1.第一步安装本地全局arco脚手架 管理员运行CMD npm i -g arco-cli安装成功后如下&#xff1a; 2.第二步在需要存放项目的文件夹拉取项目 我这里把项目存放在 D:\W…

【Android】APP网络优化学习笔记

网络优化原因 进行网络优化对于移动应用程序而言非常重要&#xff0c;原因如下&#xff1a; 用户体验&#xff1a; 网络连接是移动应用程序的核心功能之一。通过进行网络优化&#xff0c;可以提高应用的加载速度和响应速度&#xff0c;减少用户等待时间&#xff0c;提供更流…

学习笔记|大模型优质Prompt开发与应用课(二)|第四节:大模型帮你写代码,小白也能做程序

文章目录 01软件开发产业趋势与技术革新软件开发产业趋势与技术革新技术性人才很受欢迎软件开发产业趋势与技术革新技术门槛越来越低 02 大模型驱动的软件开发需求分析prompt 产品设计开发和测试prompt输出回复promptpromptprompt回复 发布和部署promptprompt 维护和更新prompt…