企业数字化中,BI 有何价值

在近些年的时间里,相关的数字化技术、理念、应用扩散到各行各业,让整个社会开始进行深层次的改变,也让城市建设这种传统的基础建设开始融合数字化,并利用数据结合数据中心、城市大脑等构建新型基础建设模式。

数据在这些年的时间中,也逐渐成长为了个人、机构、企业乃至国家的战略资源,被很多人放到“新时代的石油”这一位置上。虽然这个说法也引起了一些争议,但更多只是讨论数据和石油的差异性,却并没有多少人否认数据的价值,这也足以说明数据伴随着数字化的成长,已经发展到了一个新的程度。

一、什么是商业智能BI?

商业智能BI - 派可数据商业智能BI可视化分析平台

数字化的普及应用以及数据资产价值化的实现,使得各行各业的企业都开始了数字化转型的路径,而商业智能BI则是在这种浪潮中发挥巨大作用的数据类技术解决方案。

很多人之前不了解商业智能BI,看到最近比较火热就觉得商业智能BI发展时间不长,其实不是这样。商业智能BI能够成为当前商业世界中备受企业欢迎的数据类技术解决方案其实是有原因的,早在1958年,IBM研究员就将商业智能BI的早期形态定义为:“对事物相互关系的一种理解能力,并依靠这种能力去指导决策,以达到预期的目标。”

在此之后,商业智能BI的概念并没有停滞不前,而是随着时间、技术的发展等不断更新着自身定义和产品形态。直到2013年,在信息化和数字化的影响下,商业智能BI形成了一套现代化的概念,围绕企业发展进行扩展,重新确定了商业智能BI的定义:“商业智能BI是一个概括性术语。它包含了应用、基础结构、工具,以及提供信息访问和分析加以改进、优化决策表现的最佳实践”

经过数十年商业智能BI的发展,我们对当前环境下主流的商业智能BI产品有了一个明确的定义,一种有三条,分别是:

第一,商业智能BI是一套完整的由数据仓库、查询报表、数据分析等组成的数据类技术解决方案

第二,商业智能BI可以将企业不同业务信息系统(ERP、CRM、OA)中的数据打通并进行有效的整合

第三,商业智能BI可以借助合适的查询和分析工具快速准确的提供可视化分析或报表,为企业提供决策支持

商业智能BI - 派可数据商业智能BI可视化分析平台

商业智能BI一套完整的解决方案,其中有很多不同的功能模块,能够让企业实现多种多样的效果,例如商业智能BI可以根据企业业务数据的不同流程划分为三个层次:

第一层,可视化分析展现层 - 可视化分析展现层也就是商业智能BI的需求层,一方面代表了用户的需求,用户想看什么、要看什么、另一方面也代表了用户要分析什么,这些就在这一层进行展现。

第二层,数据模型层 - 数据模型层也就是常说的商业智能BI数据仓库,主要负责企业数据的分析模型,完成从业务计算规则向数据计算规则的转变。

第三层,数据源层 - 数据源层也就是商业智能BI的数据层,不同部门、业务线的业务信息系统,其底层数据库的数据通过ETL抽取到商业智能BI的数据仓库中,建模分析等等,最终支撑到前端的可视化分析展现。

二、商业智能BI在企业IT信息化中的位置

商业智能BI在企业中主要承担承上启下的责任,围绕数据形成了一整套数据战略体系,同时也是企业信息化建设中重要的一部分,可以说是企业进行信息化建设或者数字化转型前必须进行布署规划的一环。

一般来说,企业的信息化建设具有通用性,所以可以把大部分的企业的 IT 信息化分为两个阶段:一个是业务信息化,一个是数据信息化。这样对比讲,一般的用户更容易理解一些。

企业信息化 - 派可数据商业智能BI可视化分析平台

业务信息化 - 企业使用的ERP、CRM、OA、自建的业务系统等,业务系统的建设都统称为业务信息化。业务信息化的主要作用是管理企业的业务流程,通过规范化、标准化、线上化,来提高业务运转效率、降低企业人力、时间、精力等成本,为商业智能BI的建设打下数据基础,是业务管理思路的体现,也是现代的企业管理方式。

数据信息化 - 像我们经常所听到的大数据、商业智能BI、数据分析、数据挖掘等我们都统称为数据信息化。数据信息化可以帮助企业全面的了解企业的经营管理,从经验驱动到数据驱动,降低情绪、心理等主观影响,形成以数据为基础的业务决策支撑,提高决策的准确性,这是企业更高层次的企业管理方式。

企业信息化 - 派可数据商业智能BI可视化分析平台

信息化建设具有连贯性,没有业务系统的建设,就不会有数据的沉淀,而没有数据的沉淀,就没有建设商业智能 BI 的基础。同时,商业智能 BI 的建设能够反向推动业务信息化的建设,提高数据的质量。

业务信息化的主要使用形式 - 表单式的、以业务用户录入为主、数据的增删改操作居多,是对业务过程数据、业务流程进行管理的软件系统,可以对业务流程进行规范化、标准化处理。

数据信息化的主要使用形式 - 例如商业智能BI主要是对业务结果数据进行整体信息呈现和局部深度分析,旨在打通ERP、OA、CRM等业务系统的数据,跨业务、跨系统整合数据。

三、谁是商业智能BI的主要用户?

商业智能BI - 派可数据商业智能BI可视化分析平台

业务信息化的主要使用对象 - 一线业务执行层,更多是从业务视角出发,录入数据、记录流程、查看业务信息。

数据信息化的主要使用对象 - 管理决策层,更多的是从管理视角通过商业智能BI可视化分析去定位问题、分析问题,最终形成业务决策。

两个细节要点:

第一,没有任何一个管理决策层、领导会没事打开财务系统看财务数据,打开 OA 系统看看合同信息,高层领导不会看这些明细数据细节,也不会进到各个系统里面去看。也就是说,业务信息化不是给这一层领导来使用的。

第二,管理决策层是不是一定是指的企业最高层的领导,不见得,可以是企业各个组织层次中带有管理决策属性的人员,这些管理决策人员都可以通过商业智能BI提供决策支持。

四、数据孤岛到底说明了什么?

数据孤岛一般指的是只有一部分人能够访问的数据集,比如企业不同部门、不同业务信息系统数据库中的数据往往无法互通,只能在各自数据库中储存,无法统一进行利用,没有针对企业整体的全局视角。这样一来,每个部门、每个业务系统的数据都相互分隔,就像海外一座座孤岛,彼此无法连接,无法交流,这就是平时经常听到的数据孤岛。

商业智能BI - 派可数据商业智能BI可视化分析平台

根据之前我们提到的商业智能BI定义就能明白,商业智能BI可以打破数据孤岛,将企业各部门的业务系统数据库中的数据统一存储在数据仓库,后续可以直接在数据仓库中全面访问企业数据,并借助数据可视化制作形成的管理驾驶舱、集团看板、核心KPI指标等,以全局视角俯瞰整个企业。

管理驾驶舱 - 派可数据商业智能BI可视化分析平台

在介绍商业智能BI的时候,必须要搞清楚不同人员的需求。站在企业不同员工角度,有的人认为是有数据孤岛存在的,一定要解决。有的人是不认为有数据孤岛存在的,即使存在对他们也没有影响,所以不用解决,其根本原因是没有把握商业智能BI真正的服务对象。

五、商业智能BI从业务系统取数据取数的方式

商业智能BI是通过访问和连接业务系统数据源数据库的方式来进行取数的,不管是什么样类型的数据库,商业智能BI通过ETL连接数据库抽取业务系统原表数据到数据仓库中加工处理,最后支撑到前端的可视化分析报表展现。

商业智能BI - 派可数据商业智能BI可视化分析平台

之前有朋友这么提问的:数据源层是需要开发接口吗?

这是回答:

一般不需要,基本上这么提问的都是经历过软件系统的接口对接,软件系统的接口对接是因为有的业务软件是 JAVA 开发的,有的是 .NET 开发的,有的是 B/S 架构,有的是 C/S 架构。软件系统之间的接口是需要开发参与的,主要是串联不同软件的业务流程,这种接口是需要动代码的。 但商业智能BI在获取数据的接口不一样,是与业务系统软件自身无关的,是只需要访问和连接业务系统背后的数据库就可以的,直接从数据库取数,因此是不需要软件接口,或者没有软件接口访问这种概念的。

除非一种情况,这个业务系统是公有云,纯 SAAS 模式,这种情况下就只能通过软件对外开放的 API 接口取数了。

某医药行业销售人员绩效分析 - 派可数据商业智能BI可视化分析平台

某白酒行业渠道终端管理分析 - 派可数据商业智能BI可视化分析平台

六、数据中台、商业智能BI、大数据之间的关系应该如何理解?

商业智能BI在遇到大数据量、非结构化数据处理的场景,底层的数据仓库就升级为大数据的数据仓库架构,这就是大数据下的商业智能BI分析;在大数据的数据仓库架构基础之上,往左边更加拓展了数据的采集能力,在中间除了原有大数据架构的数据仓库建模之外,更加加入了数据资产的概念、数据资产盘点、数据资产管理,靠右扩展了数据服务的能力,将数据中台中按照一定规则处理好的数据打包对外提供服务。因此,大数据架构下的数据采集、数据仓库建模、数据资产管理和数据服务就构成了数据中台的几大核心。

数据可视化 - 派可数据商业智能BI可视化分析平台

数据中台的底子是大数据架构,数据仓库是传统商业智能BI数据仓库的大数据升级,而商业智能BI就变成了数据中台之上的应用层,利用中台的数据服务获取数据做分析展现。

这就是商业智能BI、大数据、数据中台这三者的关系和在不同数据场景、服务场景下的演变过程,看明白了这个过程,应该就不会再轻易的混淆他们的概念。至于商业智能BI、大数据、数据中台应该选择哪个,其实说到底如何选择合适的技术路线、技术架构,最终还是取决于企业自身到底要解决什么,不能盲目选择。盲目选择的结果就是大投入,小产出没有达到预期的期望。我们还是应该聚焦到需求本身,需求为王。

七、关于商业智能 BI 认知上的几大误区

很多企业把商业智能BI当做纯粹的报表工具使用,输出的形式变成了可视化图表,可图表展示的内容还是以前的部门业务信息,只展现了一线业务部门的基本情况,管理人员还是需要花费大量时间精力去了解企业整体的发展情况。

商业智能BI - 派可数据商业智能BI可视化分析平台

我这里总结了一下,大家对商业智能 BI 的理解常会碰到的一些误区:

1.商业智能 BI 就是报表可视化,就是一堆可视化图表,商业智能BI 就是前端可视化。

2.商业智能BI就是一个拖拉拽的分析工具产品。

3.商业智能BI就是商业智能BI,跟数据仓库没有关系。

4.有了商业智能BI就不需要数据仓库建模,业务人员就可以自己做商业智能BI分析,就可以拖拉拽做商业智能BI分析。

5.商业智能BI 就是业务驱动的,不需要 IT 人员支撑,敏捷商业智能BI不需要 IT 介入。

6.商业智能BI直连不香吗?直接连接数据源不就可以做分析,不需要数据仓库。

首先简要纠正一下对于这些问题的理解。

1、商业智能 BI 就是报表可视化,就是一堆可视化图表,BI 就是前端可视化。

商业智能BI是一套完整的有数据仓库、数据分析、数据报表等组成的数据技术类的解决方案,在一个 BI 项目中,20% 的时间做前端分析报表,80% 的时间都在底层数据仓库的设计、ETL 的开发、取数开发等工作。

所以可视化报表只是商业智能 BI 的最终呈现,但不是 商业智能BI 的全部。

2、商业智能 BI 就是一个拖拉拽的分析工具产品。

拖拉拽的可视化分析工具准确来讲只能解决 商业智能BI 的一部分,即可视化分析。但其实 商业智能BI 所包括的技术范围还是比较广的,涉及到从底层数据取数到前端展现分析的各个方面。

单纯拖拉拽的商业智能BI可视化分析工具严格来讲只能定位于个人和部门级,和企业级的商业智能BI 有很大的不同,所以单纯的上一个商业智能BI分析工具发挥不了商业智能BI的真正作用,也替代不了商业智能BI的位置。

3、以前也总有人说商业智能BI就是业务驱动,商业智能BI就是 BI,跟数据仓库没有关系。

这个问题很有深度,在以前我也这么认为过,总觉得有了商业智能BI就不需要数据仓库建模,业务人员就可以自己做 商业智能BI分析,就可以拖拉拽做商业智能BI分析,不需要IT人员支撑,敏捷商业智能BI不需要 IT 介入,不需要建数据仓库。

管理驾驶舱大屏 - 派可数据商业智能BI可视化分析平台

在企业级的商业智能BI项目建设中,真正能做到完全靠业务人员简单拖拉拽一些就能随便实现数据可视化分析,至少在我个人从业的十几年工作经验中,95%以上的企业都做不到。我服务过的重点企业包括:SHP( Security Health Plan )、微软(中国)、微软(美国)、VWFC( 大众金融 )等。

VWFC 做的算是非常不错的,少有的业务人员自己动手做很多报表,线上跑了几千张报表。为什么? 因为底层数据仓库就搭建了很多年,底层数据架构相对比较规范。Business Driven 业务驱动,它的前提是什么?

1) 底层数据质量很规范,数据仓库架构很完整,不让业务人员碰底层数据,ETL、取数、指标计算等等统统都是 IT 部门来维护。

2) 业务人员通过培训要熟练掌握商业智能BI前端报表工具的使用,要很懂放出来的数据分析模型接口。

3) 业务人员要非常熟悉业务和数据。

第 2)和第 3)条很多企业没有问题,第 1)条直接弄个前端 商业智能BI 工具让业务人员解决,能解决掉吗? 很显然业务人员是不具备这种能力的。

这就是一到培训的时候,商业智能BI工具使用起来很简单,但是一旦到实际的企业 商业智能BI 项目开发就发现寸步难行。因为培训的时候,给出的数据表都是经过选择的,永远都是质量很高的、规范的只需要简单左表连右表例如销售订单表、订单明细表,自然很容易把可视化报表给实现出来。

数据可视化 - 派可数据商业智能BI可视化分析平台

但是在实际企业 商业智能BI 项目分析中,分析指标的计算规则绝非简单几张表关联就可以解决的,不信的话可以挑战一下一个实际的指标计算逻辑:挑战一个 ETL 数据清洗的小案例 在数据库中就一张数据表,数据理解起来也很简单,但很多 商业智能BI 开发人员做起来也需要废很大的精力,就更别谈业务人员自助 商业智能BI 分析了。

八、商业智能BI的本质 - 企业业务管理思维的落地

商业智能BI的本质 - 派可数据商业智能BI可视化分析平台

商业智能 BI 到底是什么?技术?产品?还是其它?我们把对于 BI 的理解再提升一个层次:商业智能 BI 是一家企业业务和管理思维的落地。这个怎么来理解呢?简单来说,就是在可视化报表上呈现的内容就是一家企业真正关注的内容,这里面有管理高层重点关注的企业经营性的分析指标,也有某具体部门的。

九、商业智能BI 和数据仓库 Data Warehouse 有什么区别和联系?

经常会碰到有人问商业智能BI和数据仓库有什么区别,实际上这个问题的背后能反映出来一些朋友对商业智能BI的理解还是有些不准确和偏差,这个问题实际上从概念上把BI和数据仓库人为的割裂了。这种情况其实也比较正常,因为大家对商业智能BI的第一印象就是各种炫酷的可视化图表、报表,再加上市面上有很多轻量的前端可视化商业智能BI分析工具,就造成大家对BI的认知就停留在可视化这部分了。

准确的来说,商业智能BI不仅仅包含前端可视化分析、报表展现的能力,更包含了底层数据仓库的建设过程。Gartner 在上世纪九十年代就已经提到了商业智能 Business Intelligence,它更多的认为:BI是一种数据类的技术解决方案,将许多来自不同企业业务系统的数据提取有分析价值的数据进行清洗、转换和加载,就是抽取Extraction、转换 Transformation、加载Loading 的ETL过程,最终合并到一个数据仓库中,按照一定的建模方式例如Inmon 的3NF 建模、Kimball 的维度建模或者两者都有的混合式架构模型,最终在这个基础上再利用合适的分析展现工具来形成各种可视化的分析报表为企业的管理决策层提供数据决策支撑。

商业智能BI - 派可数据商业智能BI可视化分析平台

在企业中,我们需要明确我们的商业智能BI建设是面向企业级的还是个人和部门的分析工作。如果是个人数据分析师,使用这类前端商业智能BI分析工具就足够了。如果是需要构建一个企业级的商业智能BI项目,就不能只关注前端可视化分析能力这个层面,更应该关注到底层数据架构的构建,也就是数据仓库这个层面。

十、数据仓库的建模方法论 Kimball vs Inmon 以及混合架构

数据仓库建模时商业智能BI项目建设中的重中之重,Inmon 的三范式 3NF 建模和 Kimball 的维度建模都是 商业智能BI 数据仓库建模的方法论,这两种商业智能BI建模的方式有什么区别和联系。

十一、实际开展一个 BI 项目的时候对于需求的落地的方法论

商业智能BI是一个完全需求驱动的,既然是需求就需要做访谈和调研。在商业智能BI需求进行访谈和调研之前要提前熟悉行业的业务特点,基于企业自身要熟悉他们的业务流程,以及所访谈部门的他们大概会关注的重点,都需要提前梳理一遍。在脑海里把整个业务框架给建立起来,反复的演练。

十二、什么样的企业应该要上商业智能 BI 了?

什么样的企业适合上商业智能BI?看业务基础信息化程度和日常业务管理的细致程度和颗粒度。业务基础信息化程度就是企业自身的IT业务系统基础建设,没有业务系统的支撑,做商业智能BI就缺乏数据基础;第二就是业务管理的颗粒度,企业自身业务管理程度是不是比较细致了,急需通过商业智能BI来提升业务管理、决策支撑的效率。

十三、如何高效的给高层领导做 BI 数据分析汇报总结

做完商业智能BI项目,还要考虑最终如何跟老板汇报的问题,掌握商业智能BI数据分析思维框架和汇报的五个重点:用户业务层次与范围、工作成果、计划执行复盘、问题反馈、展望规划与愿景。

商业智能BI - 派可数据商业智能BI可视化分析平台

这里只是一个简单的汇报框架,还有很多点可以往里面加。比如围绕行业讲一下行业驱动因素跟 商业智能BI 如何结合的;从企业经营管理角度,企业愿景到 CSF 到 KPI 到绩效是如何分解和重新组织的;比如财务视角下的归因分析;金字塔的管理模型;动态指标库构成原理等等都可以有所选择的进行融入和说明。

十四、商业智能BI项目行业和业务知识的积累

做商业智能BI还必须熟悉行业和业务知识,不结合行业业务知识,商业智能BI的项目是很难落地的。商业智能BI的本质其实是企业的业务和管理思维的落地。企业的高层、业务部门的管理人员为什么要通过商业智能BI去看报表,他们看的是什么,重点关注的是什么?这些内容就是他们日常在企业中业务经营管理的重点。

数据可视化 - 派可数据商业智能BI可视化分析平台

在商业智能BI项目上看上去零零散散的报表,在实际用户眼里其实是有很强的逻辑关联性的。并且层次越高的管理人员看的商业智能BI报表内容越聚焦,看的是业务结果。一线业务部门的人员可能关注的更零散,看的是明细的业务过程数据。

所以,对于一名优秀的商业智能BI开发人员、开发顾问,不仅仅是需要在技术层面打磨,更需要在行业性知识和企业业务知识上有所沉淀。

十五、关于商业智能 BI 实时性处理的话题

商业智能BI 对数据的处理存在一定的滞后性,通常采用T+1模式,主要原因是ETL数据处理过程是需要有大量的时间损耗,通常是采用空间换时间的方式。

将以前按照商业智能BI 数据仓库分层的ETL调度设计成可按单独指标并自动寻找依赖的调度就大大的增加了对个别指标调度和准实时处理的灵活性。

离线数据与实时处理针对的业务场景不同,背后的技术方式实现不同,资源投入也不同,了解它们之间的定位差异有助于选择合适的方案以最小的资源投入达到企业既定完成商业智能BI 项目建设目标。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/5371.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AD83584D数字音频放大器

AD83584D是一款数字音频放大器,能够将25W(BTL)的功率分别驱动到一对8Ω负载扬声器,并将50W(PBTL)的功率驱动到一个4Ω负载扬声器。在24V电源下工作,无需外部散热器或风扇即可播放音乐。AD83584D…

第16章_多版本并发控制

第16章_多版本并发控制 🏠个人主页:shark-Gao 🧑个人简介:大家好,我是shark-Gao,一个想要与大家共同进步的男人😉😉 🎉目前状况:23届毕业生,目…

数据库I (SELECT语句)

目录 一、写在前面 1.0 内容概览 1.1 SQL 分类 1.2 SQL语言的规则与规范 1.2.1 基本规则 1.2.2 SQL大小写规范 (建议遵守) 1.3 注释 1.4 命名规则(暂时了解) 二、基本的SELECT语句 2.0 SELECT... 2.1 SELECT ... FROM…

HTML5 Web Workers

HTML5 Web Workers web worker 是运行在后台的 JavaScript,不会影响页面的性能,更好的解释是,你可以使用web worker提供的一种简单的方法来为web内容在后台线程中运行脚本,这些线程在执行任务的过程中并不会干扰用户界面&#xff…

Java反射复习

Java反射复习1.动态代理2.创建动态代理3.反射4.获取Class对象5. 反射获取构造方法6. 获取成员变量7. 获取成员变量并获取值和修改值8.获取成员方法9. 获取成员方法并运行10. 面试题:11. 练习泛型擦除12 练习:修改字符串的内容13 练习,反射和配…

【新2023Q2模拟题JAVA】华为OD机试 - 寻找密码

最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南华为od机试,独家整理 已参加机试人员的实战技巧本篇题解:寻找密码 题目 小王在进行游…

Nginx 负载均衡及其高可用

优质博文:IT-BLOG-CN 负载均衡(Load Balance): 意思就是分摊到多个操作单元上进行执行,例如Web服务器、FTP服务器、企业关键应用服务器和其他任务服务器等,从而共同完成工作任务。负载均衡建立在现有的网络…

面试官问 : SimpleDateFormat 不是线程安全的,你有了解过吗?

前言 金三银四又有战况: 我们的看官,不能白白牺牲! 现在,立刻,马上,跟我开始复现 ! 开始看我源码分析! 开始了解怎么解决! 正文 复现代码 多线程操作使用SimpleDateForma…

ChatGPT的平替来了?一文总结 ChatGPT 的开源平替,你值得拥有

文章目录【AIGC精选】总结 ChatGPT 的开源平替,你值得拥有1.斯坦福发布 Alpaca 7B,性能匹敌 GPT-3.52.弥补斯坦福 Alpaca 中文短板,中文大模型 BELLE 开源3.国产AI大模型 ChatGLM-6B 开启内测4.中文 Alpaca 模型 Luotuo 开源5. ChatGPT 最强竞…

计算机网络第一章(概述)【湖科大教书匠】

1. 各种网络 网络(Network)由若干**结点(Node)和连接这些结点的链路(Link)**组成多个网络还可以通过路由器互连起来,这样就构成了一个覆盖范围更大的网络,即互联网(互连网)。因此,互联网是"网络的网络(Network of Networks)"**因特…

Mybatis的二级缓存

缓存的概述和分类 概述 缓存就是一块内存空间.保存临时数据 为什么使用缓存 将数据源(数据库或者文件)中的数据读取出来存放到缓存中,再次获取的时候 ,直接从缓存中获取,可以减少和数据库交互的次数,这样可以提升程序的性能! 缓存的适用情况 …

38-二叉树练习-LeetCode145二叉树的后序遍历

题目 给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 。 示例 1: 输入:root [1,null,2,3] 输出:[3,2,1] 示例 2: 输入:root [] 输出:[] 示例 3: 输入:ro…

让chatGPT当我的老师如何? 通过和chatGPT交互式学习,了解在ES中,一条JSON数据是如何写到磁盘上的

最近一直有一个问题,如鲠在喉。争取早一天解决,早一天踏踏实实的睡觉。 问题是:在ES中,一条JSON数据是如何写入到磁盘上的? 如何解决这个问题?我想到了chatGPT,还有lucene的学习资料。这篇文章&…

【机器学习】决策树(理论)

决策树(理论) 目录一、何为决策树1、决策树的组成2、决策树的构建二、熵1、熵的作用2、熵的定义3、熵的计算4、条件熵的引入5、条件熵的计算三、划分选择1、信息增益( ID3 算法选用的评估标准)2、信息增益率( C4.5 算法…

DetectGPT:使用概率曲率的零样本机器生成文本检测

DetectGPT的目的是确定一段文本是否由特定的llm生成,例如GPT-3。为了对段落 x 进行分类,DetectGPT 首先使用通用的预训练模型(例如 T5)对段落 ~xi 生成较小的扰动。然后DetectGPT将原始样本x的对数概率与每个扰动样本~xi进行比较。…

Springboot 多线程分批切割处理 大数据量List集合 ,实用示例

前言 哲学提问镇贴: 不了解异步怎么使用的看官, 可阅: SpringBoot 最简单的使用异步线程案例 Async_小目标青年的博客-CSDN博客 Springboot Async异步扩展使用 结合 CompletableFuture_小目标青年的博客-CSDN博客 想了解更多关于批量list处…

25- 卷积神经网络(CNN)原理 (TensorFlow系列) (深度学习)

知识要点 卷积神经网络的几个主要结构: 卷积层(Convolutions): Valid :不填充,也就是最终大小为卷积后的大小. Same:输出大小与原图大小一致,那么N ​变成了​N2P. padding-零填充. 池化层(Subsampli…

《程序员面试金典(第6版)》面试题 08.08. 有重复字符串的排列组合(回溯算法,全排列问题)C++

题目描述 有重复字符串的排列组合。编写一种方法,计算某字符串的所有排列组合。 示例1: 输入:S “qqe” 输出:[“eqq”,“qeq”,“qqe”] 示例2: 输入:S “ab” 输出:[“ab”, “ba”] 提示: 字符都是英文字母。…

Mybatis持久层框架 | Lombok搭建

💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! Lombok Lombok项目是一个java库,它可以自动插入到编辑器和构建工具中,增强java的性能。不需要再写getter、setter或equals方法,只要…

自然语言大模型介绍

1 简介 最近一直被大语言模型刷屏。本文是周末技术分享会的提纲,总结了一些自然语言模型相关的重要技术,以及各个主流公司的研究方向和进展,和大家共同学习。 2 Transformer 目前的大模型基本都是Transformer及其变种。本部分将介绍Transf…