FPGA基于VCU的H265视频压缩,HDMI2.0输入,支持4K60帧,提供工程源码+开发板+技术支持

目录

  • 1、前言
    • 免责声明
  • 2、相关方案推荐
    • 我这里已有的视频图像编解码方案
  • 3、详细设计方案
    • 设计框图
    • FPGA开发板
    • 视频输入
    • Video PHY Controller
    • HDMI 1.4/2.0 Receiver Subsystem
    • Video Processing Subsystem
    • Video Frame Buffer Write
    • Zynq UltraScale+ VCU
    • PetaLinux 系统制作
    • VLC播放器
    • 工程源码架构
  • 4、Vivado工程源码详解
  • 5、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 6、上板调试验证并演示
    • 准备工作
    • 配置Xshell
    • 配置开发板IP
    • 配置输入视频
    • 配置H265视频压缩
    • 配置VLC播放器
    • VLC播放H265码流视频演示
  • 7、福利:工程源码获取

FPGA基于VCU的H265视频压缩,支持4K60帧,提供工程源码+开发板+技术支持

1、前言

Xilinx Zynq UltraScale+ ZUEV系列FPGA自带VCU视频编解码功能,VCU有以下特点:
• 支持多达 32 个流的同步编码和解码 (最大聚合带宽为3840x2160 @ 60fps)
• 低时延速率控制
• 灵活的速率控制:CBR、 VBR 和常量 QP
• 支持分辨率高达 4K UHD @ 60 Hz 的同步编码和解码
• 支持 8 K UHD (~15 Hz) 的降低帧速率

本设计采用Zynq UltraScale+MPSoCs–XCZU4EV的高端型号FPGA做基于VCU的H265视频压缩,输入视频源使用笔记本电脑,接收显示设备使用4K显示器;输入视频首先接入板载的HDMI2.0输入接口,然后经过板载的PS8409或其他同等功能的芯片做均衡处理;然后输入差分视频信号直接连到FPGA的GT BANK2上;然后调用Xilinx官方的Video PHY Controller IP核接收4K输入视频并做解串工作,将原来高速串行信号解为3路20bit的AXI4-Stream并行数据,该IP需使用FPGA GT资源;然后调用Xilinx官方的HDMI 1.4/2.0 Receiver Subsystem IP核做4K 高清视频的解码工作,IP 同时解码出音频流和视频流,以AXI4-Stream流输出;然后然后调用Xilinx官方的Video Processing Subsystem IP核做图像缩放操作;然后然后调用Xilinx官方的Video Frame Buffer Write IP核将图像写入PS侧的DDR4中缓存;然后然后调用Xilinx官方的Zynq UltraScale+ VCU IP核读出图像并作H265压缩;至此,整个FPGA工程已经完成;然后编译工程,导出.xsa文件,并在PetaLinux中做嵌入式Linux启动文件,在Linux软件设计中,将压缩的H265视频码流通过TCP协议从网口发送出去,在PC端可通过LVC播放器播放压缩的H265码流;然后将做好的Linux启动文件复制到TF卡中,插上TF卡即可启动Linux系统,在Xshell中即可操作终端进行配置;

本设计提供资源如下:
• 提供一套XCZU4EV开发板
• 提供一套Vivado2020.2版本的工程源码
• 提供一套编译好的固件,可启动Linux系统

本博客详细描述了Xilinx系列Zynq UltraScale+MPSoCs–XCZU4EV的高端型号FPGA做基于VCU的H265视频压缩的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网以及其他开源免费获取渠道等等),若大佬们觉得有所冒犯,请私信批评教育;部分模块源码转载自上述网络,版权归原作者所有,如有侵权请联系我们删除;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我这里已有的视频图像编解码方案

我这里有图像的JPEG解压缩、JPEG-LS压缩、H264编解码、H265编解码以及其他方案,后续还会出更多方案,我把他们整合在一个专栏里面,会持续更新,专栏地址:
直接点击前往

3、详细设计方案

设计框图

本设计使用的工程详细设计方案框图如下:
在这里插入图片描述

FPGA开发板

本UP主有下列FPGA开发板均可实现4K@60Hz视频 HDMI2.0的收发,本博客仅仅是介绍了其中Zynq UltraScale+系列的开发板实现方案,需要其他方案的朋友可以在博客末尾联系到本UP,现有开发板方案如下:
1–>Xilinx Kintxe7 FPGA开发板;
2–>Xilinx Kintxe7 UltraScale FPGA开发板;
3–>Xilinx Kintxe7 UltraScale+ FPGA开发板;
4–>Xilinx Virtxe7 FPGA开发板;
5–>Zynq UltraScale FPGA开发板;
6–>Zynq UltraScale+ FPGA开发板(本博客使用到的);
关于本博客使用的这款开发板详细信息,请参考我之前的博客,对这块开发板感兴趣的朋友可以咨询本UP获得;博客链接如下:
点击直接前往

视频输入

工程源码1的视频输入为笔记本电脑,前提是你的笔记本电脑要能够输出4K@60Hz分辨率才行,可通过查看显示驱动版本确定是否支持4K@60Hz分辨率,参考如下:
在这里插入图片描述
一般驱动版本在20.0以上就是支持输出4K的;

Video PHY Controller

用XIlinx方案做4K HDMI2.0视频收发必须要用到此IP,Video PHY Controller IP核主要做解串和串化的工作,利用FPGA GT资源,即利用GTH;在接收端接收4K 高清视频并做解串工作,将原来高速串行信号解为3路20bit的AXI4-Stream并行数据,在发送端做4K 高清视频并做串化工作,将原3路20bit的AXI4-Stream并行数据串化为高速串行信号;Video PHY Controller配置如下:
在这里插入图片描述
关于Video PHY Controller收发HDMI2.0的用法,请参考我之前的博客,博客地址如下:
点击直接前往

HDMI 1.4/2.0 Receiver Subsystem

用XIlinx方案做4K HDMI视频收发必须要用到此IP,4K HDMI输入视频经过Video PHY Controller解串后输入HDMI 1.4/2.0 Receiver Subsystem IP,该IP做4K 高清视频的解码工作,IP 同时解码出音频流核视频流,以AXI4-Stream流输出;HDMI 1.4/2.0 Receiver Subsystemr配置如下:
在这里插入图片描述
关于HDMI 1.4/2.0 Receiver Subsystem接收HDMI2.0的用法,请参考我之前的博客,博客地址如下:
点击直接前往

Video Processing Subsystem

这里介绍一下Video Processing Subsystem;
Video Processing Subsystem有缩放、去隔行、颜色空间转换等功能,这里仅使用图像缩放功能;其特点如下:
适用于Xilinx所有系列的FPGA器件;
支持最大分辨率:8K,即可以处理高达8K的视频;
输入视频格式:AXI4-Stream;
输出视频格式:AXI4-Stream;
需要SDK软件配置,其本质为通过AXI_Lite 做寄存器配置;
模块占用的FPGA逻辑资源更小,相比于自己写的HLS图像缩放而言,官方的Video Processing Subsystem资源占用大约减小30%左右,且更高效:
Video Processing Subsystem逻辑资源如下,请谨慎评估你的FPGA资源情况;
在这里插入图片描述
Video Processing Subsystem IP配置如下:这里配置为仅缩放模式,最高4K;
在这里插入图片描述
在Linux设计中可以对输入视频进行缩放,通过终端指令配置缩放视频分辨率;

关于Video Processing Subsystem图像缩放的详细用法,请参考我之前的博客,博客地址如下:
点击直接前往

Video Frame Buffer Write

Video Frame Buffer Write相当于精简版的VDMA,只具有视频写入DDR的功能,与VDMA相比具有YUV视频写入的功能,配置如下:
在这里插入图片描述
在Linux设计中可以对视频写入的基地址进行配置,通过终端指令配置;

Zynq UltraScale+ VCU

Zynq UltraScale+ VCU是Xilinx Zynq UltraScale+ ZUEV系列FPGA才有的IP,可以实现最高4K60帧的视频压缩和解压,IP的官方文档是《PG252》,读者可以自行前往阅读,Zynq UltraScale+ VCU配置如下:
在这里插入图片描述
输入视频格式为YUV420,最高分辨率配置为4K60帧;

PetaLinux 系统制作

PetaLinux版本为2020.2,提供一套编译好的固件,文件复制到TF卡后,可启动Linux系统;

VLC播放器

压缩后的H265码流可通过VLC播放器播放,关于VLC播放器的安装与使用,请参考下面的博客链接:
点击直接前往

工程源码架构

工程源码架构包括vivado Block Design逻辑设计和PetaLiux软件设计;
Block Design逻辑设计架构截图如下:
在这里插入图片描述
综合后的源码架构如下:
在这里插入图片描述

4、Vivado工程源码详解

开发板FPGA型号:Xilinx–Zynq UltraScale+MPSoCs–xczu4ev-sfvc784-2-i;
开发环境:Vivado2020.2;
输入:笔记本电脑,HDMI2.0,最高分辨率4K @60Hz;
输出:RJ45网口;
视频压缩方案:Zynq UltraScale+ VCU–H265;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握FPGA基于VCU的H265视频压缩的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:

5、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

6、上板调试验证并演示

准备工作

FPGA开发板,推荐使用本博的开发板;
笔记本电脑,仅作输入源;
带显卡的电脑主机,显卡越贵越好;
网线;
开发板连接如下:
在这里插入图片描述
插上TF卡,然后将串口线和网线连接到电脑,安装串口驱动,资料包中已经提供,上电;

配置Xshell

我们使用Xshell连接开发板模拟Linux终端的操作,Xshell配置如下:
在这里插入图片描述
在这里插入图片描述

配置开发板IP

首先需要配置开发板IP,配置为和你的电脑在同一网段即可,因为开发板压缩的码流视频需要发送给电脑;首先查看你的电脑IP,以我的为例如下:
在这里插入图片描述
然后在Xshell依次输入如下指令配置配置开发板IP,具体配置要根据你的电脑IP而定,这里只是以我的为例,如果这一步都看不懂建议不要往下看了。。。
• 终端指令:ifconfig
• 终端指令:ifconfig ethe 169.254.86.135
如下:
在这里插入图片描述
然后ping电脑IP,一定要能ping通,不然后面的操作就没意义了,如下:
• 终端指令:ping 169.254.86.136
在这里插入图片描述

配置输入视频

需要检测输入视频的格式,配置视频缩放,如下:
• 终端指令:media-ctl -p -d /dev/media0
在这里插入图片描述
可以看到我的输入视频为1080P,其中 RBG888_1X24/1920x1080为 HDMI 输入的视频格式,后面配 VPSS 参数会用到,接着配置视频缩放,如下:
• 终端指令:media-ctl -d /dev/media0 -V ““a0080000.v_proc_ss”:0 [fmt:RBG888_1X24/1920x1080 field:none]”
• 终端指令:media-ctl -d /dev/media0 -V ““a0080000.v_proc_ss”:1 [fmt:RBG888_1X24/1920x1080 field:none]”
在这里插入图片描述
如果输入的视频为4K,则指令变为如下:
• 终端指令:media-ctl -d /dev/media0 -V ““a0080000.v_proc_ss”:0 [fmt:RBG888_1X24/3840x2160 field:none]”
• 终端指令:media-ctl -d /dev/media0 -V ““a0080000.v_proc_ss”:1 [fmt:RBG888_1X24/3840x2160 field:none]”

配置H265视频压缩

输入如下指令:
• 终端指令:gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, format=NV12, width=1920, height=1080, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 ! video/x-h265,profile=main, alignment=au ! queue ! mpegtsmux alignment=7 name=mux ! rtpmp2tpay ! udpsink host=192.168.3.125 port=5004
注意!!!
注意!!!
注意!!!
上述指令中的《udpsink host=192.168.3.125 port=5004》
这里的IP是根据我自己的电脑配置的,你的电脑请根据实际情况修改;端口号5004为固定值;
在这里插入图片描述
如果输入的视频为4K,则指令变为如下:
• 终端指令:gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 ! video/x-h265,profile=main, alignment=au ! queue ! mpegtsmux alignment=7 name=mux ! rtpmp2tpay ! udpsink host=192.168.3.125 port=5004

配置VLC播放器

开发板网线连接电脑,打开VLC播放器,配置如下:
在这里插入图片描述
在这里插入图片描述
这里一定要注意:这里的IP是根据我自己的电脑配置的,你的电脑请根据实际情况修改;
注意!!!
注意!!!
注意!!!
电脑端一定要用有显卡的电脑,不要用笔记本电脑,不然延时很大,根本无法播放。。。

VLC播放H265码流视频演示

VLC播放H265码流视频演示如下:

FPGA实现H265视频压缩

7、福利:工程源码获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/536167.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu安装irtualbox注意事项

下载官网7.0版本,ubuntu22.04,安装一直出错误,查到了下面兄弟的办法,仍然不幸,最后使用apt重装,请按第二部分流程安装,安装6.1,可以用 第一部分,反正我是没搞通,7.0反复的出现相同的…

在 Leetcode 上使用 Javascript 查找数组中的所有重复项(使用 JS 的 DSA)

在本篇博客文章中,我们将探讨如何在数组中找出所有重复的元素,这个问题源自LeetCode上的一个问题。 问题描述: 我们有一个包含n个整数的数组,所有整数都在范围[1, n]内。每个整数要么出现一次,要么出现两次。任务是找…

第8章 项目整合管理

子过程:为创建预定的产品、服务或成果而执行的一系列相互关联的行动和活动; 既属于某一过程组(启动、规划、执行、监控、收尾)又属于某一知识领域(整合、范围、进度、成本、质量、资源、采购、沟通、干系人、风险&…

5G智慧水利数字孪生可视化平台,推进水利行业数字化转型

5G智慧水利数字孪生可视化平台,推进水利行业数字化转型。随着5G技术的快速发展,越来越多的行业开始探索数字化转型的道路。水利行业作为国民经济的重要支柱,也面临着数字化转型的迫切需求。5G智慧水利数字孪生可视化平台作为水利行业数字化转…

数据安全之路:Databend 用户与角色管理应用

Databend 目前支持基于角色的访问控制 (RBAC) 和 自主访问控制 (DAC) 模型,用于访问控制功能。 通过本指南,我们会了解权限和角色在 Databend 中的基本概念,以及如何管理角色、继承角色与建立层级、设置默认角色以及所有权的重要性。这些功能…

活动预告|NineData 创始人CEO叶正盛将参加QCon全球软件开发大会,共话AI大模型技术在数据库DevOps的实践

4月13日下午,NineData创始人&CEO叶正盛即将参加InfoQ中国主办的『QCon全球软件开发大会北京站』的技术大会。在本次技术峰会上,叶正盛将以《AI大模型技术在数据库DevOps的实践》为主题,深入剖析AI大模型技术在数据库DevOps领域的最新进展…

逆向案例二十一——遇到混淆怎么办

开始新的板块尝试,混淆了怎么办 网址:极简壁纸_海量电脑桌面壁纸美图_4K超高清_最潮壁纸网站 抓包抓到,好久没做解密了,奥里给干他!: 搜索关键字,打上断点,点击第二页。 _0x10a345…

SOLIDOWRKS怎么将中间格式的模具装配体转化为装配体格式

模具是工业生产中用于制作成型物品的工具,它由各种零件构成,可以通过改变所成型材料的物理状态来实现物品外形的加工。如果工程师已经有其他格式的模具装配体,但是又想将其他格式的模具装配体导入solidworks里面,并且将一个个实体…

rust wasm入门

📕作者简介: 过去日记,致力于Java、GoLang,Rust等多种编程语言,热爱技术,喜欢游戏的博主。 📘相关专栏Rust初阶教程、go语言基础系列、spring教程等,大家有兴趣的可以看一看 📙Jav…

SpringBoot修改菜品模块开发

需求分析与设计 一:产品原型 在菜品管理列表页面点击修改按钮,跳转到修改菜品页面,在修改页面回显菜品相关信息并进行修改,最后点击保存按钮完成修改操作。 修改菜品原型: 二:接口设计 通过对上述原型图…

图像处理与视觉感知---期末复习重点(7)

文章目录 一、图像压缩1.1 三种冗余1.2 模型1.3 信息测量 二、无误差压缩2.1 哈夫曼编码2.1.1 步骤2.1.2 例题 2.2 算术编码 三、变换编码 一、图像压缩 1.1 三种冗余 1. 三种基本的是数据冗余为:编码冗余、像素间冗余、心理视觉冗余。 2. 编码冗余:如果…

在线拍卖系统|基于Springboot的在线拍卖系统设计与实现(源码+数据库+文档)

在线拍卖系统目录 基于Springboot的在线拍卖系统设计与实现 一、前言 二、系统设计 三、系统功能设计 1、前台: 2、后台 用户功能模块 5.2用户功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a…

个人博客系统项目(SpringBoot+Linux部署上线)

在学完SpringBoot框架、MyBatis后,直接开始做第一个项目:博客系统 首先,该博客系统包含核心功能有: 一、登录、注册、退出登录功能。 二、没有登陆前可以查看博客首页以及博客展示的分页处理,以及点击查看博客可以…

ELK-Kibana 部署

目录 一、在 node1 节点上操作 1.1.安装 Kibana 1.2.设置 Kibana 的主配置文件 1.3.启动 Kibana 服务 1.4.验证 Kibana 1.5.将 Apache 服务器的日志(访问的、错误的)添加到 ES 并通过 Kibana 显示 1.6. 浏览器访问 二、部署FilebeatELK&…

牛客NC413 两个升序数组的中位数【hard 数组,模拟 Java、Go、PHP】

题目 题目链接: https://www.nowcoder.com/practice/b3b59248e61f499482eaba636305474b 思路 直接模拟2个数组有顺序放到一个数组中help中如果help长度为奇数,返回中间的数如果help长度为偶数,返回中间2个数的和除以2参考答案java import j…

ES6 全详解 let 、 const 、解构赋值、剩余运算符、函数默认参数、扩展运算符、箭头函数、新增方法,promise、Set、class等等

目录 ES6概念ECMAScript6简介ECMAScript 和 JavaScript 的关系ES6 与 ECMAScript 2015 的关系 1、let 、 const 、var 区别2、变量解构赋值1、数组解构赋值2、对象解构赋值3、字符串的解构赋值 3、展开剩余运算符1、**展开运算符(...)**2、**剩余运算符(...)** 4、函数的拓展函…

JSONP是跨域资源共享的古老技术吗

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

【MySQL】锁篇

SueWakeup 个人主页:SueWakeup 系列专栏:学习技术栈 个性签名:保留赤子之心也许是种幸运吧 本文封面由 凯楠📸友情提供 目录 本系列专栏 1. MySQ 中的锁 2. 表锁和行锁 表锁 行锁 3. InnoDB 存储引擎的三种行级锁 4. 悲观锁…

【腾讯云 TDSQL-C Serverless 产品体验】饮水机式使用云数据库

云计算的发展从IaaS,PaaS,SaaS,到最新的BaaS,FasS,在这个趋势中serverless(去服务器化) 计算资源发展Physical -> Virtualisation -> Cloud Compute -> Container -> Serverless。 一、背景介绍…

21、矩阵-搜索二维矩阵

思路: 这道题很有意思 从左到有升序,从上到下升序,斜边从左上到右下也是升序,从右上到做下降序。 如果是从左往右依次遍历,就会面临一个问题向右还是向下,因为都是大于当前值,不好决断&#x…