二值mask转polygon/RLE (coco segment格式)

coco数据集annotation的segmentation并不是二值mask,而是polygon格式,
看一个annotation.

{
	"segmentation": [[510.66,423.01,511.72,420.03,510.45......]], #两两组成(x,y)坐标,polygon格式
	"area": 702.1057499999998, #面积
	"iscrowd": 0,  #是不是一群物体,为0是seg是polygon格式,否则是RLE格式
	"image_id": 289343,  #对应的image id
	"bbox": [473.07,395.93,38.65,28.67], #(x,y,w,h)
	"category_id": 18,  #分类label
	"id": 1768  #当前annotation的id,每一个图像有不止一个对象,所以要对每一个对象编号(每个对象的ID是唯一的)
},

segmentation其实是一个二值mask的轮廓点,
如果想把二值mask转成这种格式,需要提取轮廓。

网上找来一张二值mask的图片

请添加图片描述

提取它的轮廓

mask_img = cv2.imread("mask.png",cv2.IMREAD_GRAYSCALE)
contours, _ = cv2.findContours(mask_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
polygons = []
for object in contours:
    coords = []

    for point in object:
        coords.append(int(point[0][0]))
        coords.append(int(point[0][1]))

    polygons.append(coords)
    print(polygons)
    #[[131, 48, 130, 49, 129, 50, 128, 51, ...]]

这个polygon能不能用呢?是不是和coco的annotation格式一样?
下面来验证一下。
引入python自带的coco库,要用到里面的annToMask函数,把polygon转为mask,
然后imshow出来看看是不是和原图一样。

先看一下annToMask函数,它需要先把polygon格式转为RLE格式。

    def annToMask(self, ann):
        """
        Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask.
        :return: binary mask (numpy 2D array)
        """
        rle = self.annToRLE(ann)
        m = maskUtils.decode(rle)
        return m
        
    def annToRLE(self, ann):
        """
        Convert annotation which can be polygons, uncompressed RLE to RLE.
        :return: binary mask (numpy 2D array)
        """
        t = self.imgs[ann['image_id']]
        h, w = t['height'], t['width']
        segm = ann['segmentation']
        if type(segm) == list:
            # polygon -- a single object might consist of multiple parts
            # we merge all parts into one mask rle code
            rles = maskUtils.frPyObjects(segm, h, w)
            rle = maskUtils.merge(rles)
        elif type(segm['counts']) == list:
            # uncompressed RLE
            rle = maskUtils.frPyObjects(segm, h, w)
        else:
            # rle
            rle = ann['segmentation']
        return rle

转成RLE的过程中需要用到annotation里的image_id, segmentation.
而现在我们只有一个segmentation, 并没有image_id,
而image_id只是用来得到图片的w, h,
所以引入coco的instance_val2017.json文件,随便找一个image_id用一下。

from pycocotools.coco import COCO
coco_api = COCO('coco/annotations/instances_val2017.json')
ann = dict()
ann['image_id'] = 37777
ann['segmentation'] = polygons
mask = coco_api.annToMask(ann)
mask = np.clip(mask*255,0,255)

说明找到的轮廓是可以用的(随便找的image_id导致h,w和原图不一致,不过不影响mask).
(在曲线的连续性上仔细看会有一些误差)。

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/5336.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

腾讯自研万亿级NLP大模型,自动生成和衍生广告文案

编者按:随着大数据与AI技术的不断发展,人们越来越看见AI大模型在数据理解、运算以及诸多泛化能力上的潜力,时下,大模型已然成为学术界与工业界探索的重点方向。然而,随着模型规模与容量的不断扩大,其所需训…

mac 把word公式默认字体Cambria Math换成LaTex字体以及带章节自动编号

word默认是Cambria Math,想用latex那种公式的字体,这里使用的是XITS Math字体 搜了很多地方,都是用ab Text这个方法先转成文本,再换字体,然后设置斜体 可是公式多起来的话这种办法很麻烦,而且一个公式里常…

PyTorch深度学习实战 | 典型卷积神经网络

在深度学习的发展过程中,出现了很多经典的卷积神经网络,它们对深度学习的学术研究和工业生产都起到了巨大的促进作用,如VGG、ResNet、Inception和DenseNet等,很多投入实用的卷积神经都是在它们的基础上进行改进的。初学者应从试验…

C语言实现堆

注:这里我们所实现的是大根堆(即父节点不小于子节点的堆) 目录 一,堆的介绍 二,堆结构的创建 三,接口实现 1,初始化与销毁 2,数据的插入与删除 3,其他接口 一&…

力扣:最后一个单词的长度(详解)

前言:内容包括:题目,代码实现,大致思路,代码解读 题目: 给你一个字符串 s,由若干单词组成,单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组…

基于springboot实现留守儿童爱心网站平台【源码+论文】

基于springboot实现留守儿童爱心网站演示开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包&…

qt 关于QtXlsx的编译 使用

版本:qt 5.14.0 qt creator4.11.0 平时用mingw编译器 QtXlsx源码下载地址:QtXlsxWriter:https://github.com/dbzhang800/QtXlsxWriter 在Qt的XLSX模块提供了一组类来读写Excel文件。它不需要 Microsoft Excel,可以…

EM7电磁铁的技术参数

电磁铁可以通过更换电磁铁极头在一定范围内改善磁场的大小和磁场的均匀度 ,并且可以通过调整极头间距改变磁场的大小。主要用于磁滞现象研究、磁化系数测量、霍尔效应研究、磁光实验、磁场退火、核磁共振、电子顺磁共振、生物学研究、磁性测量、磁性材料取向、磁性产…

期货黄金交易平台重要吗?有哪些显著的期货黄金交易平台优势?

黄金交易平台就是可以在其上面做黄金买卖交易的系统,是一种依靠行业应用软件而搭建的平台,里面会包含一些交易指标、趋势图表、K线。市场上的黄金交易平台很多,只有正规的期货黄金交易平台才值得信任。主要还是因为期货黄金交易平台优势所决定…

【五】线程安全VS线程不安全

1. Java内存模型的特征 Java内存模型是围绕着在并发过程中如何处理原子性、可见性和有序性这三个特征来建立。下面逐个看下哪些操作实现这三个特性: 1.1 原子性(Atomicity) 由Java内存模型来直接保证的原子性变量操作包括 read、load、assig…

【机器学习】线性回归

文章目录前言一、单变量线性回归1.导入必要的库2.读取数据3.绘制散点图4.划分数据5.定义模型函数6.定义损失函数7.求权重向量w7.1 梯度下降函数7.2 最小二乘法8.训练模型9.绘制预测曲线10.试试正则化11.绘制预测曲线12.试试sklearn库二、多变量线性回归1.导入库2.读取数据3.划分…

Linux--抓包-连接状态

目录 一、TCP: 1.抓包: 2.工具: 3.状态: 4.命令: 三次握手: 应答确认: 四次挥手 一、TCP: 面向连接、可靠的、流式服务 1.抓包: 三次握手、四次挥手 2.工具&…

数据库:Redis数据库

目录 一、数据库类型 1、关系型数据库 2、非关系型数据库 3、关系型非关系型区别 二、Redis数据库 1、什么是Redis 3、Redis特点 4、Redis为什么读写快 5、部署Redis数据库 6、redis管理 7、Redis数据库五大类型 8、Redis数据库基础使用 9、redis五大类型增删查 …

数据库管理-第六十三期 烦(20230327)

数据库管理 2023-03-27第六十三期 烦1 跨版本PDB迁移补遗2 BUGs3 就低不就高总结第六十三期 烦 上个周末呢,因为一些客户的事情整的一个周末都在干活,其中两天还搞到的晚上12点,几乎没咋休息,现在感觉贼累,继续写文章…

为什么我们认为GPT是一个技术爆炸

从23年初,ChatGPT火遍全球,通过其高拟人化的回答模式,大幅提升了人机对话的体验和效率,让用户拥有了一个拥有海量知识的虚拟助手,根据UBS发布的研究报告显示,ChatGPT在1月份的月活跃用户数已达1亿&#xff…

Java实习生------Redis哨兵机制详解⭐⭐⭐

“无数的我们被世界碾压成一缩黑团,无数的我们试图与世界抗争到底”🌹 参考资料:图解redis 目录 什么是哨兵机制? 哨兵机制主要干了哪三件事? 哨兵监控主节点的过程是怎样的? 判断主节点故障之后&…

Servlet---服务端小应用程序(服务器端的小组件)

零.前置知识 1.tomcat—服务器容器 tomcat就是一个服务器容器,通常说的将项目部署到服务器,就是将项目部署到tomcat中(将项目放到tomcat容器中)。 浏览器向服务器发送一个HTTP请求,请求访问demo09.html页面&#xf…

【Linux】进程相关笔记

文章目录查看进程方式批量化注释fork进程状态R状态S状态D状态T状态t状态退出码问题X&&Z状态僵尸进程的危害makefile 新知识孤儿进程查看进程方式 ls /proc ls /proc/13045 (可以查看到之情进程的属性) ps axj | head -1 && ps ajx | grep myprocess(文件名) |…

垃圾回收之CMS、G1、ZGC对比

ZGC(The Z Garbage Collector)是JDK 11中推出的一款低延迟垃圾回收器,它的设计目标包括: 停顿时间不超过10ms;停顿时间不会随着堆的大小,或者活跃对象的大小而增加;支持8MB~4TB级别的堆&#x…

【C++】string类的模拟实现

目录 一、前言 二、模拟实现 1、构造函数 2、拷贝构造函数 3、operator 4、operator[] 5、迭代器 6、string类的比较 7、string类的扩容 7.1、reserve 7.2、resize 8、string类的尾插 8.1、push_back 与 append 8.2、operator 9、string类的insert 9.1、插入字符…