Harmony鸿蒙南向驱动开发-Regulator

Regulator模块用于控制系统中各类设备的电压/电流供应。在嵌入式系统(尤其是手机)中,控制耗电量很重要,直接影响到电池的续航时间。所以,如果系统中某一个模块暂时不需要使用,就可以通过Regulator关闭其电源供应;或者降低提供给该模块的电压、电流大小。

运作机制

在HDF框架中,Regulator模块接口适配模式采用统一服务模式(如图1所示),这需要一个设备服务来作为Regulator模块的管理器,统一处理外部访问,这会在配置文件中有所体现。统一服务模式适合于同类型设备对象较多的情况,如Regulator可能同时具备十几个控制器,采用独立服务模式需要配置更多的设备节点,且服务会占据内存资源。

Regulator模块各分层的作用为:

  • 接口层:提供打开设备,操作Regulator,关闭设备的能力。

  • 核心层:主要负责服务绑定、初始化以及释放管理器,并提供添加、删除以及获取Regulator设备的能力。

  • 适配层:由驱动适配者实现与硬件相关的具体功能,如设备的初始化等。

在统一模式下,所有的控制器都被核心层统一管理,并由核心层统一发布一个服务供接口层,因此这种模式下驱动无需再为每个控制器发布服务。

图 1 Regulator统一服务模式结构图

Regulator统一服务模式结构图

约束与限制

Regulator模块当前仅支持小型系统。

开发指导

场景介绍

Regulator模块用于控制系统中某些设备的电压/电流供应。当驱动开发者需要将Regulator设备适配到OpenHarmony时,需要进行Regulator驱动适配,下文将介绍如何进行Regulator驱动适配。

接口说明

为了保证上层在调用Regulator接口时能够正确的操作硬件,核心层在//drivers/hdf_core/framework/support/platform/include/regulator/regulator_core.h中定义了以下钩子函数。驱动适配者需要在适配层实现这些函数的具体功能,并与这些钩子函数挂接,从而完成接口层与核心层的交互。

RegulatorMethod定义:

struct RegulatorMethod {
    int32_t (*open)(struct RegulatorNode *node);
    int32_t (*close)(struct RegulatorNode *node);
    int32_t (*release)(struct RegulatorNode *node);
    int32_t (*enable)(struct RegulatorNode *node);
    int32_t (*disable)(struct RegulatorNode *node);
    int32_t (*forceDisable)(struct RegulatorNode *node);
    int32_t (*setVoltage)(struct RegulatorNode *node, uint32_t minUv, uint32_t maxUv);
    int32_t (*getVoltage)(struct RegulatorNode *node, uint32_t *voltage);
    int32_t (*setCurrent)(struct RegulatorNode *node, uint32_t minUa, uint32_t maxUa);
    int32_t (*getCurrent)(struct RegulatorNode *node, uint32_t *regCurrent);
    int32_t (*getStatus)(struct RegulatorNode *node, uint32_t *status);
};

表 1 RegulatorMethod 结构体成员的钩子函数功能说明

成员函数入参返回值功能
opennode:结构体指针,核心层Regulator节点HDF_STATUS相关状态打开设备
closenode:结构体指针,核心层Regulator节点HDF_STATUS相关状态关闭设备
releasenode:结构体指针,核心层Regulator节点HDF_STATUS相关状态释放设备句柄
enablenode:结构体指针,核心层Regulator节点HDF_STATUS相关状态使能
disablenode:结构体指针,核心层Regulator节点HDF_STATUS相关状态禁用
forceDisablenode:结构体指针,核心层Regulator节点HDF_STATUS相关状态强制禁用
setVoltagenode:结构体指针,核心层Regulator节点
minUv:uint32_t类型,最小电压
maxUv:uint32_t类型,最大电压
HDF_STATUS相关状态设置输出电压范围
getVoltagenode:结构体指针,核心层Regulator节点
voltage:uint32_t类型指针,传出电压值
HDF_STATUS相关状态获取电压
setCurrentnode:结构体指针,核心层Regulator节点
minUa:uint32_t类型,最小电流
maxUa:uint32_t类型,最大电流
HDF_STATUS相关状态设置输出电流范围
getCurrentnode:结构体指针,核心层Regulator节点
regCurrent:uint32_t类型指针,传出电流值
HDF_STATUS相关状态获取电流
getStatusnode:结构体指针,核心层Regulator节点
status:uint32_t类型指针,传出状态值
HDF_STATUS相关状态获取设备状态

开发步骤

Regulator模块适配包含以下四个步骤:

  • 实例化驱动入口

  • 配置属性文件

  • 实例化核心层接口函数

  • 驱动调试

  1. 实例化驱动入口

    驱动开发首先需要实例化驱动入口,驱动入口必须为HdfDriverEntry(在hdf_device_desc.h中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。

    HDF框架会汇总所有加载的驱动的HdfDriverEntry对象入口,形成一个类似数组的段地址空间,方便上层调用。

    一般在加载驱动时HDF会先调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。

    struct HdfDriverEntry g_regulatorDriverEntry = {
        .moduleVersion = 1,
        .moduleName = "virtual_regulator_driver",       // 【必要且与HCS文件中里面的moduleName匹配】
        .Init = VirtualRegulatorInit,                   // 见Init参考
        .Release = VirtualRegulatorRelease,             // 见Release参考
    };
    HDF_INIT(g_regulatorDriverEntry);                   // 调用HDF_INIT将驱动入口注册到HDF框架中
  2. 配置属性文件

    以Hi3516DV300开发板为例,在//vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs文件中添加deviceNode描述。

    deviceNode信息与驱动入口注册相关,器件属性值与核心层RegulatorNode成员的默认值或限制范围有密切关系。

    由于采用了统一服务模式,device_info.hcs文件中第一个设备节点必须为Regulator管理器,其各项参数必须如如表2所示:

    表 2 device_info.hcs节点参数说明

    成员名
    policy驱动服务发布的策略,Regulator管理器具体配置为1,表示驱动对内核态发布服务
    priority驱动启动优先级(0-200)。值越大优先级越低,优先级相同则不保证device的加载顺序,regulator管理器具体配置为50
    permission驱动创建设备节点权限,Regulator管理器具体配置为0664
    moduleName驱动名称,Regulator管理器固定为HDF_PLATFORM_REGULATOR_MANAGER
    serviceName驱动对外发布服务的名称,Regulator管理器固定为HDF_PLATFORM_REGULATOR_MANAGER
    deviceMatchAttr驱动私有数据匹配的关键字,Regulator管理器设置为hdf_platform_regulator_manager

    从第二个节点开始配置具体Regulator控制器信息,此节点并不表示某一路Regulator控制器,而是代表一个资源性质设备,用于描述一类Regulator控制器的信息。本例只有一个Regulator设备,如有多个设备,则需要在device_info.hcs文件增加deviceNode信息,以及在regulator_config_linux.hcs文件中增加对应的器件属性。

    • device_info.hcs 配置参考

      root {
          device_info {
              platform :: host {
                  hostName = "platform_host";
                  priority = 50;
                  device_regulator :: device {
                      device0 :: deviceNode {	                                 // 为每一个Regulator控制器配置一个HDF设备节点,存在多个时添加,否则不用。
                          policy = 1;	                                         // 2:用户态、内核态均可见;1:内核态可见;0:不需要发布服务。
                          priority = 50;	                                     // 驱动启动优先级
                          permission = 0644;	                                 // 驱动创建设备节点权限
                          moduleName = "HDF_PLATFORM_REGULATOR_MANAGER";                                                //【必要】用于指定驱动名称,需要与期望的驱动Entry中的moduleName一致。
                          serviceName = "HDF_PLATFORM_REGULATOR_MANAGER";		 // 【必要且唯一】驱动对外发布服务的名称
                          deviceMatchAttr = "hdf_platform_regulator_manager";  // 【必要】用于配置控制器私有数据,要与regulator_config.hcs中对应控制器保持一致,具体的控制器信息在regulator_config.hcs中。
                      }
                      device1 :: deviceNode {
                          policy = 0;
                          priority = 55;
                          permission = 0644;
                          moduleName = "linux_regulator_adapter";
                          deviceMatchAttr = "linux_regulator_adapter";
                      }
                  }
              }
          }
      }
    • regulator_config_linux.hcs配置参考

      root {
          platform {
              regulator_config {
              match_attr = "linux_regulator_adapter";
              template regulator_controller {   // 【必要】模板配置,继承该模板的节点如果使用模板中的默认值,则节点字段可以缺省。
                  device_num = 1;
                  name = "";
                  devName = "regulator_adapter_consumer01";
                  supplyName = "";
                  mode = 1;
                  minUv = 0;                    // 最小电压
                  maxUv = 20000;                // 最大电压
                  minUa = 0;                    // 最小电流
                  maxUa = 0;                    // 最大电流
                  }
              controller_0x130d0000 :: regulator_controller {
                  device_num = 1;
                  name = "regulator_adapter_1";
                  devName = "regulator_adapter_consumer01";
                  supplyName = "virtual-regulator-hdf-adapter";
                  mode = 1;
                  minUv = 1000;
                  maxUv = 50000;
                  minUa = 0;
                  maxUa = 0;
                  }
              // 每个Regulator控制器对应一个controller节点,如存在多个Regulator控制器,请依次添加对应的controller节点。
              controller_0x130d0001 :: regulator_controller {
                  device_num = 1;
                  name = "regulator_adapter_2";
                  devName = "regulator_adapter_consumer01";
                  supplyName = "virtual2-regulator-hdf-adapter";
                  mode = 2;
                  minUv = 0;
                  maxUv = 0;
                  minUa = 1000;
                  maxUa = 50000;
                  }
              }
          }
      }

      需要注意的是,新增regulator_config.hcs配置文件后,必须在hdf.hcs文件中将其包含,否则配置文件无法生效。

      例如:本例中regulator_config.hcs所在路径为//vendor/hisilicon/hispark_taurus_linux/hdf_config/device/regulator/regulator_config_linux.hcs,则必须在产品对应的hdf.hcs中添加如下语句:

      #include "device/regulator/regulator_config_linux.hcs"
  3. 实例化核心层接口函数

    完成驱动入口注册之后,下一步就是对核心层RegulatorNode对象的初始化,包括驱动适配者自定义结构体(传递参数和数据),实例化RegulatorNode成员RegulatorMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind、Init、Release)。

    • 自定义结构体参考。

      从驱动的角度看,RegulatorNode结构体是参数和数据的载体,HDF框架通过DeviceResourceIface将regulator_config.hcs文件中的数值读入其中。

      // RegulatorNode是核心层控制器结构体,其中的成员在Init函数中会被赋值。
      struct RegulatorNode {
          struct RegulatorDesc regulatorInfo;
          struct DListHead node;
          struct RegulatorMethod *ops;
          void *priv;
          struct OsalMutex lock;
      };
      
      struct RegulatorDesc {
          const char *name;                           // regulator名称
          const char *parentName;                     // regulator父节点名称
          struct RegulatorConstraints constraints;    // regulator约束信息
          uint32_t minUv;                             // 最小输出电压值
          uint32_t maxUv;                             // 最大输出电压值
          uint32_t minUa;                             // 最小输出电流值
          uint32_t maxUa;                             // 最大输出电流值
          uint32_t status;                            // regulator的状态,开或关。
          int useCount;
          int consumerRegNums;                        // regulator用户数量
          RegulatorStatusChangecb cb;                 // 当regulator状态改变时,可通过此变量通知。
      };
      
      struct RegulatorConstraints {
          uint8_t alwaysOn;     // regulator是否常开
          uint8_t mode;         // 模式:电压或者电流
          uint32_t minUv;       // 最小可设置输出电压
          uint32_t maxUv;       // 最大可设置输出电压
          uint32_t minUa;       // 最小可设置输出电流
          uint32_t maxUa;       // 最大可设置输出电流
      };
    • 实例化RegulatorNode成员RegulatorMethod。

      // regulator_virtual.c中的示例:钩子函数的填充
      static struct RegulatorMethod g_method = {
          .enable = VirtualRegulatorEnable,
          .disable = VirtualRegulatorDisable,
          .setVoltage = VirtualRegulatorSetVoltage,
          .getVoltage = VirtualRegulatorGetVoltage,
          .setCurrent = VirtualRegulatorSetCurrent,
          .getCurrent = VirtualRegulatorGetCurrent,
          .getStatus = VirtualRegulatorGetStatus,
      };
    • Init函数开发参考

      入参:

      HdfDeviceObject是整个驱动对外提供的接口参数,具备HCS配置文件的信息。

      返回值:

      HDF_STATUS相关状态(表4为部分展示,如需使用其他状态,可参考//drivers/hdf_core/interfaces/inner_api/utils/hdf_base.h中HDF_STATUS定义)。

      表 3 HDF_STATUS相关状态说明

      状态(值)描述
      HDF_ERR_INVALID_OBJECT控制器对象非法
      HDF_ERR_MALLOC_FAIL内存分配失败
      HDF_ERR_INVALID_PARAM参数非法
      HDF_ERR_IOI/O 错误
      HDF_SUCCESS初始化成功
      HDF_FAILURE初始化失败

      函数说明:

      初始化自定义结构体和RegulatorNode成员,并通过调用核心层RegulatorNodeAdd函数挂载Regulator控制器。

      static int32_t VirtualRegulatorInit(struct HdfDeviceObject *device)
      {
          int32_t ret;
          const struct DeviceResourceNode *childNode = NULL;
          ...
          DEV_RES_NODE_FOR_EACH_CHILD_NODE(device->property, childNode) {
              ret = VirtualRegulatorParseAndInit(device, childNode);         // 【必要】实现见下
          ......
          }
          ......
      }
      
      static int32_t VirtualRegulatorParseAndInit(struct HdfDeviceObject *device, const struct DeviceResourceNode *node)
      {
          int32_t ret;
          struct RegulatorNode *regNode = NULL;
          (void)device;
      
          regNode = (struct RegulatorNode *)OsalMemCalloc(sizeof(*regNode)); //加载HCS文件
          ......
          ret = VirtualRegulatorReadHcs(regNode, node);                      // 读取HCS文件信息
          ......
          regNode->priv = (void *)node;                                      // 实例化节点
          regNode->ops = &g_method;                                          // 实例化ops
      
          ret = RegulatorNodeAdd(regNode);                                   // 挂载节点
          ......
      }
    • Release函数开发参考

      入参:

      HdfDeviceObject是整个驱动对外提供的接口参数,其包含了HCS配置文件中的相关配置信息。

      返回值:

      无。

      函数说明:

      释放内存和删除控制器,该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源。

      static void VirtualRegulatorRelease(struct HdfDeviceObject *device)
      {
          ......
          RegulatorNodeRemoveAll(); // 【必要】调用核心层函数,释放RegulatorNode的设备和服务
      }
  4. 驱动调试

    【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的测试用例是否成功等。

最后

有很多小伙伴不知道学习哪些鸿蒙开发技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?而且学习时频繁踩坑,最终浪费大量时间。所以有一份实用的鸿蒙(HarmonyOS NEXT)资料用来跟着学习是非常有必要的。 

这份鸿蒙(HarmonyOS NEXT)资料包含了鸿蒙开发必掌握的核心知识要点,内容包含了ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、音频、视频、WebGL、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、Harmony南向开发、鸿蒙项目实战等等)鸿蒙(HarmonyOS NEXT)技术知识点。

希望这一份鸿蒙学习资料能够给大家带来帮助,有需要的小伙伴自行领取,限时开源,先到先得~无套路领取!!

获取这份完整版高清学习路线,请点击→纯血版全套鸿蒙HarmonyOS学习资料

鸿蒙(HarmonyOS NEXT)最新学习路线

  •  HarmonOS基础技能

  • HarmonOS就业必备技能 
  •  HarmonOS多媒体技术

  • 鸿蒙NaPi组件进阶

  • HarmonOS高级技能

  • 初识HarmonOS内核 
  • 实战就业级设备开发

有了路线图,怎么能没有学习资料呢,小编也准备了一份联合鸿蒙官方发布笔记整理收纳的一套系统性的鸿蒙(OpenHarmony )学习手册(共计1236页)鸿蒙(OpenHarmony )开发入门教学视频,内容包含:ArkTS、ArkUI、Web开发、应用模型、资源分类…等知识点。

获取以上完整版高清学习路线,请点击→纯血版全套鸿蒙HarmonyOS学习资料

《鸿蒙 (OpenHarmony)开发入门教学视频》

《鸿蒙生态应用开发V2.0白皮书》

图片

《鸿蒙 (OpenHarmony)开发基础到实战手册》

OpenHarmony北向、南向开发环境搭建

图片

 《鸿蒙开发基础》

  • ArkTS语言
  • 安装DevEco Studio
  • 运用你的第一个ArkTS应用
  • ArkUI声明式UI开发
  • .……

图片

 《鸿蒙开发进阶》

  • Stage模型入门
  • 网络管理
  • 数据管理
  • 电话服务
  • 分布式应用开发
  • 通知与窗口管理
  • 多媒体技术
  • 安全技能
  • 任务管理
  • WebGL
  • 国际化开发
  • 应用测试
  • DFX面向未来设计
  • 鸿蒙系统移植和裁剪定制
  • ……

图片

《鸿蒙进阶实战》

  • ArkTS实践
  • UIAbility应用
  • 网络案例
  • ……

图片

 获取以上完整鸿蒙HarmonyOS学习资料,请点击→纯血版全套鸿蒙HarmonyOS学习资料

总结

总的来说,华为鸿蒙不再兼容安卓,对中年程序员来说是一个挑战,也是一个机会。只有积极应对变化,不断学习和提升自己,他们才能在这个变革的时代中立于不败之地。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/532585.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vue3---基础2(component)

主要讲解 component 的创建 以及vue插件的安装 Vue.js Devtools 为谷歌浏览器的Vue插件,可以在调试工具内查看组件的数据等 下载 有两种下载方式 1. 谷歌应用商店 打开Chrome应用商店去下载,这个方法需要魔法 2. 极简插件 极简插件官网_Chrome插件下载_…

【图论】详解链式前向星存图法+遍历法

细说链式前向星存图法 首先要明白,链式前向星的原理是利用存边来进行模拟图。 推荐左神的视频–建图、链式前向星、拓扑排序 比方说有这样一张图,我们用链式前向星来进行模拟时,可以将每一条边都进行编号,其中,红色的…

SQL注入sqli_labs靶场第五、六题

第五题 根据报错信息,判断为单引号注入 没有发现回显点 方法:布尔盲注(太耗时,不推荐使用) 1)猜解数据库名字:(所有ASCII码值范围:0~127) ?id1 and length…

数字化浪潮下,制造业如何乘势而上实现精益生产

随着数字化技术的迅猛发展,制造业正迎来前所未有的变革机遇。本文将探讨如何利用数字化手段助推制造业实现精益生产,从而在激烈的市场竞争中脱颖而出。 1、构建智能化生产系统 借助物联网技术,实现设备之间的互联互通,构建智能化…

【Qt踩坑】ARM 编译Qt5.14.2源码-QtWebEngine

1.下载源码 下载网站:Index of /new_archive/qt/5.14/5.14.2/single 2.QWebEngine相关依赖 sudo apt-get install flex libicu-dev libxslt-dev sudo apt-get install libssl-dev libxcursor-dev libxcomposite-dev libxdamage-dev libxrandr-dev sudo apt-get …

3. Spring 注解存储对象 Bean的命名规范

从Java5.0开始,Java开始支持注解。Spring做为Java生态中的领军框架,从2.5版本后也开始支持注解。相比起之前使用xml来配置Spring框架,使用注解提供了更多的控制Spring框架的方式。 SpringFramework版本对应jdk版本重要特性SpringFramework 1…

Linux——fork复制进程

1)shell: 在计算机科学中,Shell俗称壳(用来区别于核),是指“为使用者提供操作界面”的软件(command interpreter,命令解析器)。它类似于DOS下的COMMAND.COM和后来的cmd.exe。它接收用户命令&…

练习题(2024/4/10)

1. 删除有序数组中的重复项 给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元…

安装VMware ESXi虚拟机系统

简介:ESXi是VMware公司开发的一款服务器虚拟化操作系统。它能够在一台物理服务器上运行多个虚拟机,每个虚拟机都可以独立运行操作系统和应用程序,而且对硬件配置要求低,系统运行稳定。 准备工具: 1.8G或者8G以上容…

查看TensorFlow已训模型的结构和网络参数

文章目录 概要流程 概要 通过以下实例,你将学会如何查看神经网络结构并打印出训练参数。 流程 准备一个简易的二分类数据集,并编写一个单层的神经网络 train_data np.array([[1, 2, 3, 4, 5], [7, 7, 2, 4, 10], [1, 9, 3, 6, 5], [6, 7, 8, 9, 10]]…

MySQL高级(索引结构Hash,为什么InnoDB存储引擎选择使用B+tree索引结构?)

目录 1、Hash索引结构 2、Hash索引特点 3、存储引擎支持 4、为什么InnoDB存储引擎选择使用Btree索引结构? 1、Hash索引结构 哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。 如…

吴恩达机器学习-异常检测(Anomaly Detection)

在本练习中,您将实现异常检测算法,并将其应用于检测网络上出现故障的服务器。 文章目录 1-包2-异常检测2.1问题陈述2.2数据集2.3高斯分布2.2.1高斯实现的估计参数:2.2.2选择阈值𝜖 2.4高维数据集 1-包 首先,让我们运…

脑电放大 LM386

LM386介绍 LM386 是一种音频集成功放,具有自身功耗低、电压增益可调整电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 电源电压 4-12V 或 5-18V(LM386N-4);静态消耗电流为 4mA;电压增益为20-200dB;在引脚1和8开路时&a…

Android开发基础:事件传递 基于监听器的事件处理 基于回调的事件处理

目录 一,事件传递机制 1.事件传递机制的三个方法 (1)public boolean dispatchTouchEvent(MotionEvent event) (2)public boolean onInterceptTouchEvent(MotionEvent event&…

【C++题解】1601. 挖胡萝卜

问题:1601. 挖胡萝卜 类型:基本运算、小数运算 题目描述: 小兔朱迪挖了 x 个胡萝卜,狐狸尼克挖到胡萝卜数量是小兔挖到的 3 倍,小羊肖恩挖到胡萝卜的数量比狐狸尼克少 8 个。 请你编程计算一下狐狸尼克和小羊肖恩分别…

时间系列预测总结

转载自:https://mp.weixin.qq.com/s/B1eh4IcHTnEdv2y0l4MCog 拥有一种可靠的方法来预测和预测未来事件一直是人类的愿望。在数字时代,我们拥有丰富的信息,尤其是时间序列数据。 时间序列是指基于时间刻度维度(天、月、年等&…

Mybatis plus 使用通用枚举

说明&#xff1a;mybatis plus 使用枚举可实现数据库存入时指定值保存&#xff0c; 读取时指定值展示&#xff08;返给前端&#xff09; 可通过继承IEnum<T>、 EnumValue实现 1、引包 <dependency><groupId>mysql</groupId><artifactId>mysql-…

java基础语法(16)| 集合

前言 Hello,大家好!很开心与你们在这里相遇,我是一个喜欢文字、喜欢有趣的灵魂、喜欢探索一切有趣事物的女孩,想与你们共同学习、探索关于IT的相关知识,希望我们可以一路陪伴~ 1. 集合概述 什么是集合 集合:集合是java中提供的一种容器,可以用来存储多个数据,并且可以存…

每天五分钟深度学习PyTorch:面对Tensorflow,为何我选择PyTorch

这篇专栏文章不是为了挑起tenserflow和pytorch中哪个更好&#xff0c;众所周知tensorflow诞生以来&#xff0c;已经成为最流行的深度学习框架&#xff0c;可以说github中大多数的深度学习代码实现是以tensorflow实现的&#xff0c;也就是说资源众多&#xff0c;社区强大&#x…

自动化测试十大必备(背)面试题!【含答案精讲】

&#x1f525; 交流讨论&#xff1a;欢迎加入我们一起学习&#xff01; &#x1f525; 资源分享&#xff1a;耗时200小时精选的「软件测试」资料包 &#x1f525; 教程推荐&#xff1a;火遍全网的《软件测试》教程 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1…