一.线程库(thread)
1.1 线程类的简单介绍
thread类文档介绍
在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在并行编程时不需要依赖第三方库,而且在原子操作中还引入了原子类的概念。要使用标准库中的线程,必须包含< thread >头文件。
函数名 | 功能 |
---|---|
thread() | 构造一个线程对象,没有关联任何线程函数,即没有启动任何线程thread(fn, args, …)构造一个线程对象,并关联线程函数fn,args,…为线程函数的参数 |
get_id() | 获取线程id |
joinable() | 线程是否还在执行,joinable代表的是一个正在执行中的线程 |
join() | 该函数调用后会阻塞住线程,当该线程结束后,主线程继续执行 |
detach() | 在创建线程对象后马上调用,用于把被创建线程与线程对象分离开,分离的线程变为后台线程,创建的线程的"死活"就与主线程无关 |
注意:
- 线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的状态。
- 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。
- 当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。
- thread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值。
- 可以通过joinable()函数判断线程是否是有效的。
get_id的返回值是什么?
#include <thread>
int main()
{
std::thread t1;
cout << t1.get_id() << endl;
return 0;
}
get_id()的返回值类型为id类型,id类型实际为std::thread命名空间下封装的一个类,该类中包含了一个结构体:
// vs下查看
typedef struct
{ /* thread identifier for Win32 */
void *_Hnd; /* Win32 HANDLE */
unsigned int _Id;
} _Thrd_imp_t;
如何给线程对象关联线程函数?
- 函数指针
- 函数对象(仿函数)
- lambda表达式
- 包装器
#include <iostream>
#include <thread>
#include <functional>
using namespace std;
void ThreadFunc(int a)
{
cout << "Thread1" << a << endl;
}
class TF
{
public:
void operator()()
{
cout << "Thread3" << endl;
}
};
int main()
{
// 线程函数为函数指针
thread t1(ThreadFunc, 10);
// 线程函数为lambda表达式
thread t2([] {cout << "Thread2" << endl; });
// 线程函数为函数对象(仿函数)
thread t3(*ThreadFunc, 10);
TF tf;
thread t4(tf);
// 线程函数为包装器
function<void()> func = []() { cout << "Thread5" << endl; };
thread t5(func);
t1.join();
t2.join();
t3.join();
t4.join();
t5.join();
cout << "Main thread!" << endl;
return 0;
}
1.2 线程函数参数
线程函数的参数是以值拷贝的方式拷贝到线程栈空间中的的,因此:即使线程参数为引用类型,在线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是外部实参。
#include <thread>
void ThreadFunc1(int& x)
{
x += 10;
}
void ThreadFunc2(int* x)
{
*x += 10;
}
int main()
{
int a = 10;
// 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式,但其实际
引用的是线程栈中的拷贝
thread t1(ThreadFunc1, a);
t1.join();
cout << a << endl;
// 如果想要通过形参改变外部实参时,必须借助std::ref()函数
thread t2(ThreadFunc1, std::ref(a);
t2.join();
cout << a << endl;
// 地址的拷贝
thread t3(ThreadFunc2, &a);
t3.join();
cout << a << endl;
return 0;
}
二.锁
2.1 锁的介绍
随着计算机硬件的发展,多核CPU变得越来越普遍,多线程编程成为提升系统性能的重要手段。然而,多线程并发访问共享资源可能导致数据不一致性和竞态条件等问题。因此,C++11为了标准化并发编程模型,引入了基于内存模型的一系列并发支持,其中就包含了锁这样的同步原语。
2.1 mutex的种类
- std::mutex
互斥访问:互斥锁(std::mutex)是最基础的同步对象,它可以阻止多个线程同时进入临界区(一段需要互斥执行的代码)。当一个线程获取了互斥锁后,其他试图获取该锁的线程会阻塞,直到该锁被释放。
函数名 | 函数功能 |
---|---|
lock() | 上锁:锁住互斥量 |
unlock() | 解锁:释放对互斥量的所有权 |
try_lock() | 尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞 |
- std::recursive_mutex
递归锁定:std::recursive_mutex 允许同一线程多次获得同一个锁,这是针对那些可能会递归调用并需要重新锁定相同资源的情况。
- std::timed_mutex
定时锁:std::timed_mutex 类似于普通互斥锁,但增加了尝试锁定指定时间段的功能,超时后不会阻塞而是返回错误。
函数名 | 函数功能 |
---|---|
try_lock_for() | 接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。 |
try_lock_until() | 接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。 |
2.2 lock_guard
std::lock_gurad 是 C++11 中定义的模板类。定义如下:
template<class _Mutex>
class lock_guard
{
public:
// 在构造lock_gard时,_Mtx还没有被上锁
explicit lock_guard(_Mutex& _Mtx)
: _MyMutex(_Mtx)
{
_MyMutex.lock();
}
// 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁
lock_guard(_Mutex& _Mtx, adopt_lock_t)
: _MyMutex(_Mtx)
{}
~lock_guard() _NOEXCEPT
{
_MyMutex.unlock();
}
lock_guard(const lock_guard&) = delete;
lock_guard& operator=(const lock_guard&) = delete;
private:
_Mutex& _MyMutex;
};
lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行了封装,在需要加锁的地方,只需要用上述介绍的任意互斥体实例化一个lock_guard,调用构造函数成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁问题。但是其使用方法太单一,用户没有办法对该锁进行控制,因此C++11又提供了unique_lock。
2.3 unique_lock
与lock_guard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动(move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。使用以上类型互斥量实例化unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解锁,可以很方便的防止死锁问题。
- 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock
- 修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)
- 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相同)、mutex(返回当前unique_lock所管理的互斥量的指针)。
2.4 原子操作库(atomic)
多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦。
#include <iostream>
#include <thread>
using namespace std;
unsigned long sum = 0L;
void fun(size_t num)
{
for (size_t i = 0; i < num; ++i)
sum++;
}
int main()
{
cout << "Before joining,sum = " << sum << std::endl;
thread t1(fun, 10000000);
thread t2(fun, 10000000);
t1.join();
t2.join();
cout << "After joining,sum = " << sum << std::endl;
return 0;
}
以上问题虽然加锁可以解决,但是加锁有一个缺陷就是:只要一个线程在对sum++时,其他线程就会被阻塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁。因此C++11中引入了原子操作。所谓原子操作:即不可被中断的一个或一系列操作,C++11引入
的原子操作类型,使得线程间数据的同步变得非常高效。
使用atomic类模板,定义出需要的任意原子类型。
atmoic<T> t; // 声明一个类型为T的原子类型变量t
注意:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此在C++11中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及operator=等,为了防止意外,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算符重载默认删除掉了。