【Java多线程】案例(1):设计模式

目录

一、什么是设计模式?

二、单例模式

1. 饿汉模式

2. 懒汉模式

懒汉模式-第一次改进

懒汉模式-第二次改进

懒汉模式-第三次改进


一、什么是设计模式?

设计模式是针对软件设计中常见问题的通用解决方案。它们提供了一种被广泛接受的方法来解决特定类型的问题,并且具有经过验证的效果和可重复使用性。设计模式不是代码或类库,而是一种解决问题的思维方式或模式。

设计模式就好比象棋中的“棋谱”,针对对方的一些走法,黑方应招的时候有一些固定的套路,按照套路走局势就不会吃亏。想要成为一名象棋高手,背棋谱其实是必然的。因此,设计模式也是开发中的一种重要的解决问题的方式。

二、单例模式

单例模式是校招中 最常考的设计模式 之⼀。
单例模式能保证某个类在程序中只存在唯一一份实例,而不会创建出多个实例。
单例模式具体的实现方式有很多,最常见的是" 饿汉"和" 懒汉"两种。

1. 饿汉模式

饿汉式单例(Eager Initialization):在类加载时就创建实例。

// 单例模式 - 饿汉模式
// 类加载的同时,直接创建实例。
class Singleton {
    // 在类加载时就创建实例
    private static Singleton instance = new Singleton();

    // 对外提供获取实例的静态方法
    public static Singleton getInstance() {
        return instance;
    }

    // 私有化构造方法,防止外部直接实例化
    private Singleton() {
    }
}

public class Demo1 {
    public static void main(String[] args) {
        // 获取单例对象
        Singleton s1 = Singleton.getInstance();
        Singleton s2 = Singleton.getInstance();
        
        // 判断两个实例是否相同
        System.out.println(s1 == s2);  // 输出 true,说明两个引用指向同一个实例

        // 以下代码会报错,因为构造方法是私有的,无法在外部直接实例化
        // Singleton s = new Singleton();
    }
}

上述代码类加载就会创建实例的原因:

在Java中,类加载时机是在首次使用该类时,Java虚拟机会负责对类进行加载、连接和初始化。在加载阶段,虚拟机会加载类的字节码并创建Class对象,而在初始化阶段,虚拟机会执行类的初始化过程,其中包括对静态变量的初始化。因此,在首次使用该类时,类会被加载并且静态变量会被初始化,从而创建单例实例

通过对构造方法的私有化,使得上述代码只有一个实例。

由于单例对象在类加载时就被创建,因此不存在线程安全问题。但如果实例很大且长时间未使用,会造成资源浪费。

2. 懒汉模式

懒汉式单例(Lazy Initialization):在第一次调用时创建实例。

public class Singleton {
    private static Singleton instance = null;
    
    private Singleton() {
        // 私有化构造方法
    }
    
    public static Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

注意:此示例不是线程安全的【Java多线程(3)】线程安全问题和解决方案

线程安全问题发生在首次创建实例时,如果多个线程中同时调用getInstance方法,由于线程的抢占式执行,就可能导致创建出多个实例。

如果实例创建好了,后面在多线程环境调用getInstance就不再有线程安全问题了,因为不会再new实例了。

因此,加上synchronized 就能够解决这里的创建多个实例的问题

懒汉模式-第一次改进

public class SingletonLazy {
    private static volatile SingletonLazy instance = null;

    public static SingletonLazy getInstance() {
        synchronized (SingletonLazy.class) {
            if (instance == null) {
                instance = new SingletonLazy();
            }
        }
        return instance;
    }

    private SingletonLazy() {
    }
}

这样操作后,就能保证只有第一个调用getInstance方法的线程会创建实例,其余线程即使抢到CPU执行权,也会被阻塞。后续条件判断的时候也就不会再new了。

但是,饿汉模式只有在最开始调用getInstance会存在线程安全问题,后续再调用是没有线程安全问题的。而上述代码针对后续调用,明明没有线程安全问题,却还是要加锁(可能导致其他线程阻塞),这使得代码的性能大大降低了。

因此,对于这个问题,还要进行一些改进,就是只在对象还未实例化的时候对实例化对象的这段代码进行加锁

懒汉模式-第二次改进

class SingletonLazy {
    private static SingletonLazy instance = null;

    public static SingletonLazy getInstance() {
        if (instance == null) {
            synchronized (SingletonLazy.class) {
                if (instance == null) {
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }

    private SingletonLazy() {
    }
}

使用双重if判定,降低锁竞争的频率。

  1. 在 getInstance() 方法中首先检查 instance 是否为 null,如果是 null,表示尚未创建实例,需要进行实例化操作。
  2. 由于该方法可能被多个线程同时调用,因此需要使用双重检查锁定来确保只有一个线程创建实例。
  3. 在第一次检查 instance 为 null 后,进入同步块,并再次检查 instance 是否为 null,以防止多个线程同时进入同步块后重复创建实例。
  4. 如果 instance 仍然为 null,则在同步块内部创建新的 SingletonLazy 实例,并将其赋值给 instance

这样的做法,即使在对象还未实例化的时候,有多个线程进入第一个if判断了,里面的锁仍会保证只有一个线程会去实例化,并且在后续线程再调用getInstance方法的时候,外层的if判断就把它挡住了,就不会再上锁了。

但是,写出双重if判定的代码的时候,强大的IDEA就已经给出了一个警告:双重检查锁定

既然IDEA都给警告了,意味着这里可能还会问题存在!

懒汉模式-第三次改进

IDEA给我们的处理方式是:给instance加上volatile关键字。

一方面,这里就又涉及到了内存可见性问题:在第一次创建实例中,被阻塞的线程有可能没有感知到instance的引用已经改变了,导致的内存可见性问题。

另一方面,就是我们在【Java多线程(3)】线程安全问题和解决方案 这篇博客中还未解决的指令重排序问题,这是我们这里要讨论的重点

指令重排序,也是编译器的一种优化策略。看一个去超市买菜的例子:

可以看到,优化后的策略节省了不少时间。

而在instance = new SingletonLazy(); 这行代码中,其实会有很多很多的指令,但是大体上可以分成三个步骤:

  1. 申请内存空间
  2. 调用构造方法(对内存空间进行初始化)
  3. 把此时内存空间的地址,赋值给 instance 引用

而在指令重排序的优化下,上述过程不一定是按 123 执行的,也可能是 132 执行(1一定先执行),这种优化策略,在单线程下都是没有问题的,但 132 在多线程下,可能就会引起bug。假设有t1和t2两个线程,线程间是按照以下顺序执行的:

volatile解决的就是上述两个问题(内存可见性和指令重排序(保证执行顺序是123))

因此,懒汉模式的最终代码就是在第二次改进的基础上,给instance加上volatile关键字。

//懒汉模式-最终代码
class SingletonLazy {
    private static volatile SingletonLazy instance = null;

    public static SingletonLazy getInstance() {
        if (instance == null) {
            synchronized (SingletonLazy.class) {
                if (instance == null) {
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }

    private SingletonLazy() {
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/531938.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java的jmap命令使用详解

jmap命令简介 jmap(Java Virtual Machine Memory Map)是JDK提供的一个可以生成Java虚拟机的堆转储快照dump文件的命令行工具。 以外,jmap命令还可以查看finalize执行队列、Java堆和方法区的详细信息,比如空间使用率、当前使用的…

【智能优化算法】粘液霉菌算法(SMA):一种随机优化的新方法

粘液霉菌算法(SMA)是一种基于自然界中粘菌振荡模式的强大种群优化器。2020年4月,SMA的研究发表在著名的Future Generation Computer Systems (FGCS)杂志(中科院二区期刊)上。 01.引言 SMA 具有独特的数学模型和极具竞争力的结果,…

grpc-教程(golang版)

目录 一、介绍 二、环境准备 三、Golang中使用grpc 1.编写protobuf文件 2.服务端 3.客户端 四、proto文件详解 1.proto语法 2.数据类型 基本数据类型 数组类型 map类型 嵌套类型 编写风格 3.多服务 4.多个proto文件 五、流式传输 1.普通rpc 2.服务器流式 …

从零开始学习的ai教程视频,如何入手?

个人认为小白想零基础学习ai应该从理论和实操两个方面入手。理论是支撑实践的前提,只有以一种全局观角度了解ai才能实现从熟练使用ai到有自我意识的用ai创作。 接下来将会简单介绍一些理论免费学习网站和软件(一笔带过,不重点)&a…

构造析构理解与拷贝函数初识

1. 6个默认成员函数 ----初始化和清理{ 1.构造 2.析构 } -----拷贝复制{ 1.拷贝构造 2.赋值重载 } ------取地址重载{ 1.普通对象 2.const对象取地址 } 注:构造函数的目的是初始…

【Vue】生命周期

生命周期钩子(lifecycle-hooks) 每个 Vue 组件实例在创建时都需要经历一系列的初始化步骤,比如设置好数据侦听,编译模板,挂载实例到 DOM,以及在数据改变时更新 DOM。在此过程中,它也会运行被称为生命周期钩子的函数&a…

鸿蒙实战开发-如何实现查看系统相册、最近删除、收藏夹操作功能

介绍 本示例主要展示了相册相关的功能,使用ohos.file.photoAccessHelper 接口,实现了查看系统相册、创建用户相册、查看相册照片、用户相册文件添加和删除、以及预览图片、最近删除、收藏夹操作等功能; 效果预览 使用说明 主界面:查询显示…

【基于PSINS工具箱】组合导航,EKF与UKF的对比,使用153模型

代码简述 【务必注意】 需要事先安装PSINS工具箱!!! 如果没有工具箱,网上面很多,实在找不到可以找我要链接。没有工具箱是无法直接运行本程序的。 程序根据153的模型(15维状态量、3维GNSS观测量),在自己定义了一个运动路径后,使用EKF和UKF对状态进行估计,并绘制轨迹…

PostgreSQL入门到实战-第十四弹

PostgreSQL入门到实战 PostgreSQL数据过滤(七)官网地址PostgreSQL概述PostgreSQL中BETWEEN 命令理论PostgreSQL中BETWEEN 命令实战更新计划 PostgreSQL数据过滤(七) BETWEEN运算符允许您检查值是否在值的范围内。 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容…

OpenHarmony应用编译 - 如何在源码中编译复杂应用(4.0-Release)

文档环境 开发环境:Windows 11 编译环境:Ubuntu 22.04 开发板型号:DAYU 200(RK3568) 系统版本:OpenHarmony-4.0-Release 功能简介 在 OpenHarmony 系统中预安装应用的 hap 包会随系统编译打包到镜像中&a…

element用户上传头像组件带大图预览,和删除功能

element 用户上传组件不支持大图预览&#xff0c;拿组件的简单修改一些&#xff0c;发表上来主要是记一下&#xff0c;以后可以用 效果图 <template><div class"flex-img"><div class"el-upload-list el-upload-list--picture-card" v-sh…

论文笔记:The Reversal Curse: LLMs trained on “A is B” fail to learn “B is A”

iclr 2024 reviewer 评分668 1 intro 论文揭示了自回归大模型&#xff08;LLM&#xff09;中令人惊讶的泛化失败【反转诅咒】 如果模型在“A is B”形式的句子上进行训练&#xff0c;它不会自动泛化到相反的方向“B is A”通过对“Uriah Hawthorne 是深渊旋律的作曲家”等虚构…

微服务项目sc2024父工程

1.基础版本要求 jdk 17maven 3.9mysql 8.0spring boot 3.2.0spring cloud 2023.0.0spring cloud alibaba 2022.0.0.0-RC2 2.创建父工程 2.1.字符编码 2.2.java编译版本 2.3.注解生效激活 2.4.File Type过滤 2.5.父工程中只保留pom文件,其余的删了 3.父工程pom文件 <?xm…

Covalent Network(CQT)推出以太坊质押迁移计划,以增强长期结构化数据可用性、塑造万亿级 LLM 参数体系

作为 Web3 领先的链上数据层&#xff0c;Covalent Network&#xff08;CQT&#xff09;宣布了其将质押操作从 Moonbeam 迁移回以太坊的决定。此举是 Covalent Network&#xff08;CQT&#xff09;走向以太坊时光机&#xff08;EWM&#xff09;的第一步&#xff0c;EWM 是一个为…

TensorFlow学习之:深度学习基础

神经网络基础 神经网络是深度学习的核心&#xff0c;它们受人脑的结构和功能启发&#xff0c;能够通过学习大量数据来识别模式和解决复杂问题。神经网络的基本工作原理包括前向传播和反向传播两个阶段。 前向传播&#xff08;Forward Propagation&#xff09; 前向传播是神经…

OpenC910 datasheet 2.0 翻译

概述 C910是由THEAD半导体有限公司开发的一款RISC-V兼容的64位高性能处理器。它通过架构和微架构创新&#xff0c;在控制流、计算和频率方面提供行业领先的性能。C910处理器基于RV64GC指令集&#xff0c;并实现了XIE&#xff08;XuanTie指令扩展&#xff09;技术。C910采用先进…

友思特应用 | 高精度呈现:PCB多类型缺陷检测系统

导读 PCB等电子产品的精密生产制造过程中&#xff0c;往往需要将缺陷问题100%高精度暴露。友思特 PCB 多类型缺陷检测系统&#xff0c;借由Neuro-T深度学习模型自动排查全部微小缺陷&#xff0c;为工业 PCB 生产制造提供了先进可靠的质量保障。 在现代制造业中&#xff0c;尤其…

TLF9471 - High-Speed CAN FD Transceiver

1 框图描述 2 功能描述 CAN收发器被设计用来承受汽车应用的恶劣条件&#xff0c;并支持12V应用。   SBC的控制器区域网络&#xff08;CAN&#xff09;收发器部分在汽车和工业应用中提供高速&#xff08;HS&#xff09;差分模式数据传输&#xff08;最高可达2Mbaud&#xff09…

kali使用msf+apkhook520+cploar实现安卓手的攻击

学习网络安全的过程中&#xff0c;突发奇想怎么才能控制或者说是攻击手机 边找工作边实验 话不多说启动kali 一、使用msfapktool生成简单的木马程序 首先使用kali自带的msfvenom写上这样一段代码 选择安卓 kali的ip 一个空闲的端口 要输出的文件名 msfvenom -p android/met…