结构型模式--3.组合模式【草帽大船团】

1. 好大一棵树

路飞在德雷斯罗萨打败多弗朗明哥之后,一些被路飞解救的海贼团自愿加入路飞麾下,自此组成了草帽大船团,旗下有7为船长,分别是:

俊美海贼团75人
巴托俱乐部56人
八宝水军1000人
艾迪欧海贼团4人
咚塔塔海贼团200人
巨兵海贼团5人
约塔玛利亚大船团4300人
小弟数量总计5640人。
在这里插入图片描述

对于草帽大船团的结构组成,很像一棵树:路飞是这棵树的根节点,旗下的七个船长是路飞的子节点。在这七个船长的旗下可能还有若干个船长。。。
在这里插入图片描述

像草帽大船团这样,能将多个对象组成一个树状结构,用以描述部分—整体的层次关系,使得用户对单个对象和组合对象的使用具有一致性,这样的结构性设计模式叫做组合模式

现实生活中能够和组合模式对应的场景也有很多,下面举例说明:

  1. Linux 的树状目录结构
  2. 国家的行政区划分(省级、地级、县级、乡级)
  3. 解放军编制(军、师、旅、团、营、连、排、班)
  4. 公司的组织结构(树状)

2. 大决战

在海贼中,大家都预测路飞的对手应该是同为四皇的黑胡子,黑胡子手下也有很多海贼船,双方一旦开战,必定死伤无数,最后的赢家就可以得到罗杰所留下的大秘宝ONE PIECE,并成为新的海贼王。

为了让路飞成为海贼王,我决定使用组合模式为路飞写一个管理草帽大船团的程序,其对应的主要操作是这样的:扩充船员、战斗减员、显示各船队信息、加入战斗等。

2.1 团队管理

对于组合模式来说,操作这个集合中的任意一个节点的方式都是相同的,所以必须要先定义出单个节点的抽象,在这个抽象类中定义出节点的行为。

// 抽象节点
class AbstractTeam
{
public:
    AbstractTeam(string name) :m_name(name) {}
    // 设置父节点
    void setParent(AbstractTeam* node)
    {
        m_parent = node;
    }
    AbstractTeam* getParent()
    {
        return m_parent;
    }
    string getName()
    {
        return m_name;
    }
    virtual bool hasChild()
    {
        return false;
    }
    virtual void add(AbstractTeam* node) {}
    virtual void remove(AbstractTeam* node) {}
    virtual void fight() = 0;
    virtual void display() = 0;
    virtual ~AbstractTeam() {}
protected:
    string m_name;
    AbstractTeam* m_parent = nullptr;
};

草帽大船团中有若干个番队,这个抽象类对应的就是以船为单位的一个团队(一艘船就是一个节点),它内部定义了如下方法:

  1. 设置和获得当前船队的名字
    • 设置名字:构造函数
    • 获得名字:getName()
  2. 设置和得到当前船队节点的父节点
    • 设置父节点:setParent(AbstractTeam* node)
    • 得到父节点:getParent()
  3. 给当前番队添加一个子船队节点:add(AbstractTeam* node)
  4. 跟当前番队删除一个子船队节点:remove(AbstractTeam* node)
  5. 当前番队和敌人战斗:fight()
  6. 显示当前番队的信息:display()

2.2 叶子节点

草帽大船团是一种组合模式,也就是一种树状结构,在最末端的节点就没有子节点了,这种节点可以将其称之为叶子节点。叶子节点也是一个船队,所以它肯定是需要继承抽象节点类的。

// 叶子节点的小队
class LeafTeam : public AbstractTeam
{
public:
    using AbstractTeam::AbstractTeam;
    void fight() override
    {
        cout << m_parent->getName() + m_name + "与黑胡子的船员进行近距离肉搏战..." << endl;
    }
    void display() override
    {
        cout << "我是" << m_parent->getName() << "下属的" << m_name << endl;
    }
    ~LeafTeam()
    {
        cout << "我是" << m_parent->getName() << "下属的" << m_name 
            << ", 战斗已经结束, 拜拜..." << endl;
    }
};

叶子节点对应的番队由于没有子节点,所以在其对应的类中就不需要重写父类的add(AbstractTeam* node)remove(AbstractTeam* node)方法了,这也是基类中为什么不把这两个虚函数指定为纯虚函数的原因。

2.3 管理者节点

所谓的管理者节点其实就是非叶子节点。这种节点还拥有子节点,它的实现肯定是需要继承抽象节点类的。

// 管理者节点
class ManagerTeam : public AbstractTeam
{
public:
    using AbstractTeam::AbstractTeam;
    void fight() override
    {
        cout << m_name + "和黑胡子的恶魔果实能力者战斗!!!" << endl;
    }
    void add(AbstractTeam* node) override
    {
        node->setParent(this);
        m_children.push_back(node);
    }
    void remove(AbstractTeam* node) override
    {
        node->setParent(nullptr);
        m_children.remove(node);
    }
    bool hasChild()
    {
        return true;
    }
    list<AbstractTeam*> getChildren()
    {
        return m_children;
    }
    void display()
    {
        string info = string();
        for (const auto item : m_children)
        {
            if (item == m_children.back())
            {
                info += item->getName();
            }
            else
            {
                // 优先级: + > +=
                info += item->getName() + ", ";
            }
        }
        cout << m_name + "的船队是【" << info << "】" << endl;
    }
    ~ManagerTeam()
    {
        cout << "我是【" << m_name << "】战斗结束, 拜拜..." << endl;
    }
private:
    list<AbstractTeam*> m_children;
};

在管理者节点类的内部有一个容器list,容器内存储的就是它的子节点对象:

通过add(AbstractTeam* node)把当前番队的子节点存储到list
通过remove(AbstractTeam* node)把某一个子节点从当前番队的list中删除
通过display()来遍历这个list容器中的节点

2.4 战斗

最后把测试程序写一下:

// 内存释放
void gameover(AbstractTeam* root)
{
    if (root == nullptr)
    {
        return;
    }
    if (root && root->hasChild())
    {
        ManagerTeam* team = dynamic_cast<ManagerTeam*>(root);
        list<AbstractTeam*> children = team->getChildren();
        for (const auto item : children)
        {
            gameover(item);
        }
    }
    delete root;
}

// 和黑胡子战斗
void fighting()
{
    vector<string> nameList = {
        "俊美海贼团", "巴托俱乐部", "八宝水军", "艾迪欧海贼团",
        "咚塔塔海贼团", "巨兵海贼团", "约塔玛利亚大船团"
    };
    // 根节点
    ManagerTeam* root = new ManagerTeam("草帽海贼团");
    for (int i = 0; i < nameList.size(); ++i)
    {
        ManagerTeam* child = new ManagerTeam(nameList.at(i));
        root->add(child);
        if (i == nameList.size() - 1)
        {
            // 给最后一个番队添加子船队
            for (int j = 0; j < 9; ++j)
            {
                LeafTeam* leaf = new LeafTeam("第" + to_string(j + 1) + "番队");
                child->add(leaf);
                leaf->fight();
                leaf->display();
            }
            child->fight();
            child->display();
        }
    }
    root->fight();
    root->display();

    cout << "====================================" << endl;
    gameover(root);
}

int main()
{
    fighting();
    return 0;
}

输出的结果为:

约塔玛利亚大船团第1番队与黑胡子的船员进行近距离肉搏战...
我是约塔玛利亚大船团下属的第1番队
约塔玛利亚大船团第2番队与黑胡子的船员进行近距离肉搏战...
我是约塔玛利亚大船团下属的第2番队
约塔玛利亚大船团第3番队与黑胡子的船员进行近距离肉搏战...
我是约塔玛利亚大船团下属的第3番队
约塔玛利亚大船团第4番队与黑胡子的船员进行近距离肉搏战...
我是约塔玛利亚大船团下属的第4番队
约塔玛利亚大船团第5番队与黑胡子的船员进行近距离肉搏战...
我是约塔玛利亚大船团下属的第5番队
约塔玛利亚大船团第6番队与黑胡子的船员进行近距离肉搏战...
我是约塔玛利亚大船团下属的第6番队
约塔玛利亚大船团第7番队与黑胡子的船员进行近距离肉搏战...
我是约塔玛利亚大船团下属的第7番队
约塔玛利亚大船团第8番队与黑胡子的船员进行近距离肉搏战...
我是约塔玛利亚大船团下属的第8番队
约塔玛利亚大船团第9番队与黑胡子的船员进行近距离肉搏战...
我是约塔玛利亚大船团下属的第9番队
约塔玛利亚大船团和黑胡子的恶魔果实能力者战斗!!!
约塔玛利亚大船团的船队是【第1番队, 第2番队, 第3番队, 第4番队, 第5番队, 第6番队, 第7番队, 第8番队, 第9番队】
草帽海贼团和黑胡子的恶魔果实能力者战斗!!!
草帽海贼团的船队是【俊美海贼团, 巴托俱乐部, 八宝水军, 艾迪欧海贼团, 咚塔塔海贼团, 巨兵海贼团, 约塔玛利亚大船团】
====================================
我是【俊美海贼团】战斗结束, 拜拜...
我是【巴托俱乐部】战斗结束, 拜拜...
我是【八宝水军】战斗结束, 拜拜...
我是【艾迪欧海贼团】战斗结束, 拜拜...
我是【咚塔塔海贼团】战斗结束, 拜拜...
我是【巨兵海贼团】战斗结束, 拜拜...
我是约塔玛利亚大船团下属的第1番队, 战斗已经结束, 拜拜...
我是约塔玛利亚大船团下属的第2番队, 战斗已经结束, 拜拜...
我是约塔玛利亚大船团下属的第3番队, 战斗已经结束, 拜拜...
我是约塔玛利亚大船团下属的第4番队, 战斗已经结束, 拜拜...
我是约塔玛利亚大船团下属的第5番队, 战斗已经结束, 拜拜...
我是约塔玛利亚大船团下属的第6番队, 战斗已经结束, 拜拜...
我是约塔玛利亚大船团下属的第7番队, 战斗已经结束, 拜拜...
我是约塔玛利亚大船团下属的第8番队, 战斗已经结束, 拜拜...
我是约塔玛利亚大船团下属的第9番队, 战斗已经结束, 拜拜...
我是【约塔玛利亚大船团】战斗结束, 拜拜...
我是【草帽海贼团】战斗结束, 拜拜...

由于草帽大船团对应的设计模式是组合模式,它对应的是一个树模型,并且每个节点的操作方式都形同,所以在释放节点的时候就可以使用递归了,gameover()函数就是一个递归函数

3. 结构图

学完了组合模式,根据上面的例子把对应的UML类图画一下(学会之后就得先画类图,再写程序了
在这里插入图片描述

为了能够更加清楚地描述出设计模式中的组合关系(不是UML中的组合关系),在AbstractTeamManagerTeam之间画了两条线:

  • 继承关系:对节点的操作使用的是抽象类中提供的接口,以保证操作的一致性
  • 聚合关系:ManagerTeam类型的节点还可以有子节点,父节点和子节点的之间的关系需要具体问题具体分析
    • 子节点跟随父节点一起销毁,二者就是组合关系(UML中的组合关系)
    • 子节点不跟随父节点一起销毁,二者就是聚合关系
    • 上面的程序中,在父节点的析构函数中没有销毁它管理的子节点,所以在上图中标记的是聚合关系

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/530476.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode223. 矩形面积

Every day a Leetcode 题目来源&#xff1a;223. 矩形面积 解法1&#xff1a;数学 两个矩形覆盖的总面积等于两个矩形的面积之和减去两个矩形的重叠部分的面积。由于两个矩形的左下顶点和右上顶点已知&#xff0c;因此两个矩形的面积可以直接计算。如果两个矩形重叠&#xf…

Datacom HCIP笔记-MPLS协议 之二

在Ingress节点执行该命令时&#xff0c;触发所有的32位路由建立LDPLSP。 在Egress节点执行该命令时&#xff0c;触发本地32位路由建立LDPLSP&#xff0c; egress就是主机路由始发路由器 ingress就是主机路由非始发路由器 默认情况下&#xff1a;华为路由器仅为非物理接口主机路…

MCM制品图软件使用技巧-常见问题

常见问题 匀色效果不好 观察整体颜色是否一致&#xff1a;整体严重不一致时&#xff0c;使用参考匹配进行匀色处理&#xff1b;部分图层存在亮度色差时&#xff0c;使用人工调色对图层进行单独微调&#xff0c;比如提高亮度、对比度等等。局部纹理是否存在丢失&#xff0c;丢…

202.PyQt5_QTableWidget_项处理_表格控件

我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉👉 Python项目虚拟环境(超详细讲解) 👈👈 PyQt5 系 列 教 程:👉👉 Python GUI(PyQt5)文章合集 👈👈 Oracle数…

数码相框-显示JPG图片

LCD控制器会将LCD上的屏幕数据映射在相应的显存位置上。 通过libjpeg把jpg图片解压出来RGB原始数据。 libjpeg是使用c语言实现的读写jpeg文件的库。 使用libjpeg的应用程序是以"scanline"为单位进行图像处理的。 libjpeg解压图片的步骤&#xff1a; libjpeg的使…

JVM字节码与类的加载——类的加载过程详解

文章目录 1、概述2、加载(Loading)阶段2.1、加载完成的操作2.2、二进制流的获取方式2.3、类模型与Class实例的位置2.4、数组类的加载 3、链接(Linking)阶段3.1、链接阶段之验证(Verification)3.1.1、格式检查3.1.2、字节码的语义检查3.1.3、字节码验证3.1.4、符号引用验证 3.2、…

最新mysql8.3 保姆级 主从复制搭建教程

mysql 主从复制搭建 服务器配置表 机器ip操作系统主机192.168.31.25华为openEuler-22.03-LTS-SP3从机192.168.31.184华为openEuler-22.03-LTS-SP3从机192.168.31.228华为openEuler-22.03-LTS-SP3 1、在3台机器上安装独立的 mysql 1.1 创建myql文件夹用来存放mysql包 mkdir…

网络安全之权限维持那点事

权限维持 一旦黑客成功地入侵了目标系统&#xff0c;他们通常会尝试保持对系统的持久访问权&#xff0c;以便继续执行恶意活动&#xff0c;如窃取敏感数据、植入恶意软件、破坏系统功能等。 权限维持的过程可能包括以下几个方面&#xff1a; 后门植入&#xff1a;黑客可能会在…

探秘大模型:《提示工程:技巧、方法与行业应用》背后的故事

提示工程是一种新兴的利用人工智能的技术&#xff0c;它通过设计提示引导生成式 AI 模型产生预期的输出&#xff0c;来提升人与 AI 的互动质量&#xff0c;激发 AI 模型的潜力&#xff0c;提升AI的应用水平。 为了让每一个人都拥有驱动大模型的能力&#xff0c;以微软全球副总裁…

C++设计模式:原型模式(八)

1、定义与动机 定义&#xff1a;使用原型实例指定创建对象的种类&#xff0c;然后通过拷贝这些原型来创建新的对象。 动机&#xff1a; 在软件系统中&#xff0c;经常面临着“某些结构复杂的对象”的创建工作&#xff1b;由于需求的变化&#xff0c;这些对象经常面临着剧烈的变…

Window安装PostgresSQL

PostgreSQL 安装参考&#xff1a;Windows下安装PostgreSQL_window 安装postgresql-CSDN博客 安装好后打开pgAdmin4 配置Navicat连接PostgresSQL 找到安装目录文件 pg_hba.conf 修改配置增加&#xff1a; 修改前&#xff1a; # TYPE DATABASE USER ADDRES…

AI论文精读之CSPNet—— 一种加强CNN模型学习能力的主干网络

目录 一、论文摘要部分 二、提出背景 三、本文的方法 3.1 DenseNet 3.2 Cross Stage Partial DenseNet 3.3 引入 partial dense block及partial transition layer的目的 3.3.1 partial dense block 3.3.2 partial transition layer 3.4 将CSPNet应用到其他结构中 3.5 E…

100 Explosion Pack

该套装包括100种爆炸效果,包括火灾爆炸、冲击波、风暴、奇异点、特斯拉等效果。 纹理有一个透明的alpha通道,所以你可以在任何背景上使用它们! 所有效果都是高质量的,动画流畅(64帧,每帧512像素) 每个效果都使用独特的高质量精灵表。 100个不同的小精灵大小:4096x4096 …

IO流(2.其他流)

能够高效读写的缓冲流&#xff0c;能够转换编码的转换流&#xff0c;能够持久化存储对象的序列化流 一、缓冲流 缓冲流,也叫高效流&#xff0c;是对4个基本的FileXxx 流的增强&#xff0c;所以也是4个流&#xff0c;按照数据类型分类&#xff1a; 字节缓冲流&#xff1a;Buffe…

【中文医疗词嵌入模型】SMedBERT:结构化知识图谱 + 混合注意力机制 + 提及-邻居上下文建模

【中文医疗词嵌入模型】SMedBERT&#xff1a;结构化知识图谱 混合注意力机制 提及-邻居上下文建模 提出背景SMedBERT 具体到点的设计逻辑SMedBERT的背景SMedBERT的工作原理 SMedBERT 具体实现细节3.1 符号和模型3.2 Top-K Entity Sorting3.3 提及-邻居混合注意力3.4 提及-邻居…

Softing工业将亮相2024汉诺威工业博览会——工业物联网的数据集成和连接

您可在2024年4月22至26日前往汉诺威参观Softing展台&#xff0c;我们将在015号馆的F48展位进行展出&#xff0c;期待您的莅临&#xff01; | 通过灵活的数据集成解决方案无缝连接机器 在此次汉诺威工业博览会上&#xff0c;您将了解到Softing数据集成解决方案——用于机器连接…

【深度学习|基础算法】初识Transformer-encoder-decoder

关于transformer的学习 一、前言二、初识Transformer2.1 总览2.2 encoder2.3 decoder 三. 流程与细节1、输入2、self-attention 一、前言 我本身是从事图像算法行业的&#xff0c;在之前主要是做传统的图像算法&#xff0c;后来接触了基于CNN的神经网络图像算法&#xff0c;包括…

[ritsec CTF 2024] 密码部分

这个比较密码这块还是比较简单的&#xff0c;经过问了N人以后终于完成。 [Warm Up] Words 给了个猪圈密码的图片&#xff0c;这东西好久不见的感觉。 [Warm Up] Emails MTP似乎也没多好的方法&#xff0c;猜更快&#xff0c;先给了几封email然后一个用MTP长度是32&#xff08…

【微服务】------常见模型的分析与比较

DDD 分层架构 整洁架构 整洁架构又名“洋葱架构”。为什么叫它洋葱架构&#xff1f;看看下面这张图你就明白了。整洁架构的层就像洋葱片一样&#xff0c;它体现了分层的设计思想。 整洁架构最主要的原则是依赖原则&#xff0c;它定义了各层的依赖关系&#xff0c;越往里依赖越…

HUD抬头显示器中如何设计LCD的阳光倒灌实验

关键词&#xff1a;阳光倒灌实验、HUD光照温升测试、LCD光照温升测试、太阳光模拟器 HUD&#xff08;Head-Up Display&#xff0c;即抬头显示器&#xff09;是一种将信息直接投影到驾驶员视线中的技术&#xff0c;通常用于飞机、汽车等驾驶舱内。HUD系统中的LCD&#xff08;Liq…