langchain LCEL,prompt模块,outputparse输出模块

目录

基本代码

prompt模块

prompt模版控制长度 

outputparse格式化输出


LangChain表达式语言,或者LCEL,是一种声明式的方式,可以轻松地将链条组合在一起

langchian 可以使用 通义千问,我们用通义千问,用法也要申请 api:通义千问API如何使用_模型服务灵积(DashScope)-阿里云帮助中心

然后再代码目录创建一个 .env 文件,用来保存 api-key,例如

DASHSCOPE_API_KEY=sk-xxxxxxxxxx

这样就可以用了,就不需要官网默认示例的 openai 了,那个比较麻烦。

基本代码

import os
from dotenv import load_dotenv
from langchain_community.llms import Tongyi
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser


load_dotenv('key.env')  # 指定加载 env 文件
key = os.getenv('DASHSCOPE_API_KEY')  # 获得指定环境变量
DASHSCOPE_API_KEY = os.environ["DASHSCOPE_API_KEY"]  # 获得指定环境变量

model = Tongyi(temperature=1)
# 设定系统上下文,构建提示词
template = """请扮演一位资深的技术博主,您将负责为用户生成适合在微博发送的中文帖文。
请把用户输入的内容扩展成 140 字左右的文字,并加上适当的 emoji 使内容引人入胜并专业。"""

# 创建提示词对象,用于显示给用户的最终提示
prompt = ChatPromptTemplate.from_messages([("system", template), ("human", "{input}")])

# 通过 LCEL 构建调用链并执行得到文本输出
# StrOutputParser() 模型对象的输出转为字符串
chain = prompt | model | StrOutputParser()
res = chain.invoke({"input": "给大家推荐一本新书《LangChain实战》,让我们一起开始来学习 LangChain 吧!"})
print(res)

prompt模块

上面的提示词不带参数,我们使用 langchain 的 prompt 模块来做一个带参数的提示词

import os
from dotenv import load_dotenv
from langchain_community.llms import Tongyi
from langchain_core.prompts import ChatPromptTemplate


load_dotenv('key.env')  # 指定加载 env 文件
DASHSCOPE_API_KEY = os.environ["DASHSCOPE_API_KEY"]  # 获得指定环境变量
prompt = ChatPromptTemplate.from_template("请编写一篇关于{topic}的中文小故事,不超过100字")
model = Tongyi(temperature=1)
chain = prompt | model
res = chain.invoke({"topic": "小白兔"})
print(res)

对话提示词模版

import os
from dotenv import load_dotenv
load_dotenv('key.env')  # 指定加载 env 文件
DASHSCOPE_API_KEY = os.environ["DASHSCOPE_API_KEY"]  # 获得指定环境变量


from langchain_core.prompts import ChatPromptTemplate

chat_template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful AI bot. Your name is {name}."),
        ("human", "Hello, how are you doing?"),
        ("ai", "I'm doing well, thanks!"),
        ("human", "{user_input}"),
    ]
)
res = chat_template.format_messages(name="Bob", user_input="What is your name?")
print(res)

prompt模版控制长度 

示例选择器

可以根据用户输入的长度,输入较长选择更多示例,输入较短选择更少示例

import os
from dotenv import load_dotenv
load_dotenv('key.env')  # 指定加载 env 文件
DASHSCOPE_API_KEY = os.environ["DASHSCOPE_API_KEY"]  # 获得指定环境变量


from langchain_core.prompts import PromptTemplate
from langchain_core.prompts import FewShotPromptTemplate
from langchain.prompts.example_selector import LengthBasedExampleSelector

# 创建一些反义词输入输出的示例内容
examples = [
    {"input": "happy", "output": "sad"},
    {"input": "tall", "output": "short"},
    {"input": "energetic", "output": "lethargic"},
    {"input": "sunny", "output": "gloomy"},
    {"input": "windy", "output": "calm"},
]

example_prompt = PromptTemplate(
    input_variables=["input", "output"],
    template="Input: {input}\nOutput: {output}",
)
example_selector = LengthBasedExampleSelector(
    examples=examples,
    example_prompt=example_prompt,
    # 设定期望的示例文本长度
    max_length=25
)
dynamic_prompt = FewShotPromptTemplate(
    example_selector=example_selector,
    example_prompt=example_prompt,
    # 设置示例以外部分的前置文本
    prefix="Give the antonym of every input",
    # 设置示例以外部分的后置文本
    suffix="Input: {adjective}\nOutput:\n\n",
    input_variables=["adjective"],
)

# 当用户输入的内容比较少时,所有示例都足够被使用
print(dynamic_prompt.format(adjective="big"))

# 当用户输入的内容足够长时,只有少量示例会被引用
long_string = "big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else"
print(dynamic_prompt.format(adjective=long_string))

 

outputparse格式化输出

使用 PydanticOutputParser 控制输出格式

from typing import List

from langchain_core.prompts import PromptTemplate
from langchain_community.llms.ollama import Ollama
from langchain.output_parsers import PydanticOutputParser
from langchain.pydantic_v1 import BaseModel, Field

class Actor(BaseModel):
    name: str = Field(description="name of an author")
    book_names: List[str] = Field(description="list of names of book they wrote")


actor_query = "随机生成一位知名的作家及其代表作品"

parser = PydanticOutputParser(pydantic_object=Actor)

prompt = PromptTemplate(
    template="请回答下面的问题:\n{query}\n\n{format_instructions}\n如果输出是代码块,请不要包含首尾的```符号",
    input_variables=["query"],
    partial_variables={"format_instructions": parser.get_format_instructions()},
)

input = prompt.format_prompt(query=actor_query)
print(input)

model = Ollama(model="llama2-chinese:13b")
output = model(input.to_string())

print(output)
parser.parse(output)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/530027.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java语言实现文件分割与合并

一: 题目: 写一个方法,将feige.exe文件分割为每份1MB大小的若干份(最后一份可以不满1MB), 存储在一个temp的文件夹中(每份文件名自己定义,例如1.temp 2.temp), 然后再写一个方法,将temp文件夹中的若干份合并为一个文件fg.exe 代码: main…

FreeGPT3.5 开源软件

GPT-3.5不需要付费,也不需要注册用户,可以直接使用了,官方彻底开放了API接口。 该API政策一放开,GitHub很快就已经出现了一个开源项目FreeGPT35,可以自动生成key调用GPT3.5的API接口,再也用不着注册账号和申…

「51媒体」中小初创企业如何做好媒体宣传?

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 中小初创企业在做媒体宣传时,由于通常资源有限,需要更加精明地使用外部资源来提升品牌知名度和业务成长。利用专业的媒体服务商可以是一个非常有效的方法。 明确目…

Android OOM问题定位、内存优化

一、常用工具: 1、LeakCanary val refWatcher: RefWatcher? TestApp.getRefWatcher(activity) refWatcher?.watch(activity);//检测是否有泄露,即触发GC回收,看activity是否被回收,没有被回收就是泄露了。 二、常见的几种内…

CSS aspect-ratio属性设置元素宽高比

aspect-ratio 是CSS的一个属性&#xff0c;用于设置元素的期望宽高比。它设置确保元素保持特定的比例&#xff0c;不受其内容或容器大小的影响。 语法&#xff1a; aspect-ratio: <ratio>;其中 <ratio> 是一个由斜杠&#xff08;/&#xff09;分隔的两个数字&…

【机器学习】一文掌握机器学习十大分类算法(上)。

十大分类算法 1、引言2、分类算法总结2.1 逻辑回归2.1.1 核心原理2.1.2 算法公式2.1.3 代码实例 2.2 决策树2.2.1 核心原理2.2. 代码实例 2.3 随机森林2.3.1 核心原理2.3.2 代码实例 2.4 支持向量机2.4.1 核心原理2.4.2 算法公式2.4.3 代码实例 2.5 朴素贝叶斯2.5.1 核心原理2.…

CPU问题排查

经常发现生产环境CPU运行很高&#xff0c;我们想知道到底是什么代码这么消耗CPU TOP命令 此时我们经常使用top来找到 CPU 使用率比较高的一些线程 容器中的docker 备注&#xff1a; 如果是docker 中的top命令。需要关注&#xff0c;一般来说不需要&#xff0c;挂载内容的多…

SQL注入sqli_libs靶场第一题

第一题 联合查询 1&#xff09;思路&#xff1a; 有回显值 1.判断有无注入点 2.猜解列名数量 3.判断回显点 4.利用注入点进行信息收集 爆用户权限&#xff0c;爆库&#xff0c;爆版本号 爆表&#xff0c;爆列&#xff0c;爆账号密码 2&#xff09;解题过程&#xff1…

云安全在金融领域的作用是什么?

云安全在金融领域发挥着至关重要的作用&#xff0c;使金融机构能够保护敏感数据、遵守监管要求并推动创新。通过实施强有力的安全措施、利用先进技术并对新出现的威胁保持警惕&#xff0c;金融机构可以保护其数字资产并维持客户的信任。 金融机构面临的挑战 1.缺乏全网数据支撑…

Django交易商场

Hello&#xff0c;我是小恒不会java 最近学习django&#xff0c;写了一个demo,学到了不少东西。 我在GitHub上开源了&#xff0c;提示‘自行查看代码&#xff0c;维护&#xff0c;运行’。 最近有事&#xff0c;先发布代码了&#xff0c;我就随缘维护更新吧 介绍&#xff1a; 定…

spikingjelly训练自己的网络---量化 --测试

第二个 但是我发现&#xff0c;都要反量化&#xff0c;因为pytorch是只能支持浮点数的。 https://blog.csdn.net/lai_cheng/article/details/118961420 Pytorch的量化大致分为三种&#xff1a;模型训练完毕后动态量化、模型训练完毕后静态量化、模型训练中开启量化&#xff0c;…

苍穹外卖11(Apache ECharts前端统计,营业额统计,用户统计,订单统计,销量排名Top10)

目录 一、Apache ECharts【前端】 1. 介绍 2. 入门案例 二、营业额统计 1. 需求分析和设计 1 产品原型 2 业务规则 3 接口设计 2. 代码开发 3. 功能测试 三、用户统计 1. 需求分析和设计 1 产品原型 2 业务规则 3 接口设计 2. 代码开发 3. 功能测试 四、订单统…

MacOS初识SIP——解决快捷指令sh脚本报错Operation not permitted

前言 因为一些原因&#xff0c;设计了一套快捷指令&#xff0c;中间涉及到一个sh脚本的运行&#xff0c;通过快捷指令运行时就会报错&#xff1a;operation not permitted 奇怪的是在快捷指令窗口下运行一切正常&#xff0c;但是从其他地方直接调用&#xff0c;例如通过Comma…

网络安全:重要性与应对措施

1. 网络安全的重要性 随着互联网的普及和信息技术的快速发展&#xff0c;网络安全问题已经变得日益突出。网络攻击者可以通过各种手段窃取个人信息、破坏系统、传播病毒等&#xff0c;给个人和社会带来巨大的损失。因此&#xff0c;网络安全已经成为信息化时代的重要问题之一。…

上门服务小程序|上门服务系统|上门服务软件开发流程

在如今快节奏的生活中&#xff0c;上门服务小程序的需求越来越多。它们向用户提供了方便、高效的服务方式&#xff0c;解决了传统服务行业中的很多痛点。如果你也想开发一个上门服务小程序&#xff0c;以下是开发流程和需要注意的事项。 1、确定需求&#xff1a;在开始开发之前…

SCI一区 | Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现OOA-TCN-BiGRU-Attention鱼鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述程序…

如何将h5网页打包成iOS苹果IPA文件

哈喽&#xff0c;大家好呀&#xff0c;淼淼又来和大家见面啦&#xff0c;最近有很多小伙伴都被难住了&#xff0c;是什么问题给他们都难住了呢&#xff0c;许多小伙伴都说想要把h5网页打包成iOS苹果IPA文件&#xff0c;但是却不知道具体怎么操作&#xff0c;是怎么样的一个流程…

蓝桥杯每日一题(背包dp,线性dp)

//3382 整数拆分 将 1,2,4,8看成一个一个的物品&#xff0c;以完全背包的形式放入。 一维形式&#xff1a;f]0]1; #include<bits/stdc.h> using namespace std; //3382整数拆分 const int N1e610, M5e510; int mod1e9; int f[N],n; int main() {cin>>n;//转化为完…

appium+jenkins实例构建

自动化测试平台 Jenkins简介 是一个开源软件项目&#xff0c;是基于java开发的一种持续集成工具&#xff0c;用于监控持续重复的工作&#xff0c;旨在提供一个开放易用的软件平台&#xff0c;使软件的持续集成变成可能。 前面我们已经开完测试脚本&#xff0c;也使用bat 批处…

从零开始学习:如何使用Selenium和Python进行自动化测试?

安装selenium 打开命令控制符输入&#xff1a;pip install -U selenium 火狐浏览器安装firebug&#xff1a;www.firebug.com&#xff0c;调试所有网站语言&#xff0c;调试功能 Selenium IDE 是嵌入到Firefox 浏览器中的一个插件&#xff0c;实现简单的浏览器操 作的录制与回…