【数据结构】考研真题攻克与重点知识点剖析 - 第 8 篇:排序

前言

  • 本文基础知识部分来自于b站:分享笔记的好人儿的思维导图与王道考研课程,感谢大佬的开源精神,习题来自老师划的重点以及考研真题。
  • 此前我尝试了完全使用Python或是结合大语言模型对考研真题进行数据清洗与可视化分析,本人技术有限,最终数据清洗结果不够理想,相关CSDN文章便没有发出。

(考研真题待更新)

欢迎订阅专栏:408直通车

请注意,本文中的部分内容来自网络搜集和个人实践,如有任何错误,请随时向我们提出批评和指正。本文仅供学习和交流使用,不涉及任何商业目的。如果因本文内容引发版权或侵权问题,请通过私信告知我们,我们将立即予以删除。

文章目录

  • 前言
  • 第八章 排序
    • 概述
      • 排序
      • 算法的稳定性
      • 根据数据是否在内存中进行分类
        • 小结
    • 插入排序
      • 直接插入排序
      • 折半插入排序
        • 小结
      • 希尔排序
        • 小结
    • 交换排序
      • 概述
      • 冒泡排序
        • 小结
      • 快速排序
    • 选择排序
      • 概述
      • 简单选择排序
        • 小结
      • 堆排序
        • 小结
      • 堆的插入删除
        • 插入
        • 删除
    • 二路归并排序
      • 实现过程
    • 基数排序
      • 基本概念
      • 实现过程
      • 性能分析
      • 稳定性
      • 应用
      • 补充
    • 排序算法的分析
      • 结论
    • 外部排序
      • 外部排序基本概念
        • 构造初始“归并段"
        • 第一趟归并
        • 第二趟归并
        • 第三趟归并
      • 外部排序的方法
      • 优化(都减少归并趟数s,减少磁盘读写次数)
      • 多路平衡归并与败者树
      • 置换-选择排序(生成初始归并段)
      • 最佳归并树(k叉哈夫曼树)
    • 代码
      • 快排
      • 归并
      • 二分查找(可用于折半)

第八章 排序

概述

排序

  • 将无序序列排成一个有序序列的运算(如果排序的数据结点包含多个数据域,排序针对一个域)
    在这里插入图片描述

算法的稳定性

  • 能够使任何数值相等的元素,排序以后相对次序不变

  • 稳定性只对结构类型数据排序有意义,例:先按数学成绩排序,再按总分排序
    在这里插入图片描述

根据数据是否在内存中进行分类

  • 内部排序

    • 在排序期间元素全部存放在内存中的排序
  • 外部排序

    • 在排序期间元素无法全部同时存放在内存中,必须在排序的过程中根据要求不断地在内、外存之间移动的排序
      在这里插入图片描述
小结

在这里插入图片描述

插入排序

直接插入排序

  • 概念

    • 首先以一个元素为有序的序列,然后讲后面的元素依次插入到有序的序列中适合的位置直到所有元素都插入有序序列在这里插入图片描述
  • 实现过程

    • 在这里插入图片描述

      • 排序某时刻将待排序表分割为三部分,顺序查出L(i)在L[1…i-1]的插入位置k

      • 将L[k…i-1]中的所有元素依次后移一个位置,将L(i)复制到L(k)

    • 哨兵

      • 在这里插入图片描述
        在这里插入图片描述
  • 性能分析在这里插入图片描述在这里插入图片描述
    在这里插入图片描述

    • 时间复杂度(平均):O(n^2)

      • 最好(有序):O(n)

        • 最坏(逆序):O(n^2)
    • 空间复杂度:O(1)

  • 稳定性

    • 稳定
  • 补充提高速度

    • 减少元素比较次数,引入折半插入排序

    • 减少元素的移动次数,引入希尔排序,每次移动步幅增大

折半插入排序

在这里插入图片描述

  • 实现过程

    • 首先确定折半插入排序的范围,利用折半查找找到插入的位置,然后一次性对数据进行移动,最后插入该元素
  • 性能分析

    • 时间复杂度:比较次数减少O(nlogn),移动次数不变,整体O(n^2)

    • 空间复杂度:O(1)

  • 稳定性

    • 稳定

在这里插入图片描述

小结

在这里插入图片描述

希尔排序

在这里插入图片描述

  • 概念

    • 本质上还是插入排序,只是把待排序列分成几个子序列,分别对子序列进行直接插入排序
  • 实现过程

    • 先取一个小于n的步长d,把表中数据分为d组,所有距离为d的倍数记录在同一组,组内进行直接插入排序

    • 缩小步长d,不断重复直到d=1为止

    • 若d=5,跨越6个数在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述

  • 性能分析在这里插入图片描述

    • 时间复杂度(平均):O(n^1.3)

      • 最坏:O(n^2)
    • 空间复杂度:O(1)

  • 稳定性

    • 不稳定
      在这里插入图片描述
小结

在这里插入图片描述

交换排序

概述

  • 根据序列中两个元素关键字的比较结果来对换这两个记录在序列中的位置

冒泡排序

在这里插入图片描述

  • 实现过程

    • 从前往后(从后往前)两两比较相邻元素的值,若逆序则交换,直到序列比较完

    • 每一趟会将最大的元素交换到待排序列最后一个位置(将较小的元素交换到待排序列第一个位置)

    • 进行下一趟排序,前一趟确定元素不参与

    • 如果某一趟排序过程中未发生交换,则可以提前结束

  • 性能分析在这里插入图片描述

    • 时间复杂度(平均):O(n^2)

      • 最好:O(n)

        • 最坏:O(n^2)
    • 空间复杂度:O(1)

  • 稳定性

    • 稳定
  • 补充

    • 冒泡排序产生的有序子序列一定全局有序,即每趟会将一个元素放到最终的位置上
      在这里插入图片描述
小结

在这里插入图片描述

快速排序

  • 实现过程

    • 首先选取一个元素作为枢轴,以枢轴为界将排序表分为两个部分,左边小于枢轴,右边大于枢轴

    • 然后对着两部分分别递归重复上述步骤,直到每个部分内只有一个元素或空为止
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述

  • 性能分析

    • 时间复杂度

      • 快速排序的运行时间与划分是否对称有关,应尽量选取可以将数据中分的枢轴元素(想象一颗二叉树)

      • 最好情况:待排序列越无序,算法效率越高:O(nlog2n)

      • 最坏情况:待排序列越有序,算法效率越高:O(n^2)

      • 平均情况:快速排序平均情况下与最优情况下运行时间很接近,是所有内部排序算法中平均时间最优的排序算法
        在这里插入图片描述

    • 空间复杂度(平均):O(log2n)在这里插入图片描述
      在这里插入图片描述

      • 最好:O(log2n)

        • 最坏:O(n)
  • 稳定性

    • 不稳定
  • 优化:划分均匀

    • 选头中尾三个位置的元素,取中间值为枢轴元素

    • 随机选一个元素作为枢轴元素

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述

选择排序

概述

  • 每一趟(如第i躺)在后面n-i+1(i=1,2,…,n-1)个待排序元素中选取关键字最小的元素,作为有序子序列的第i个元素,直到第n-1趟完成

  • 选择排序的时间性能不随记录序列中关键字的分布而改变

简单选择排序

在这里插入图片描述

  • 实现过程

    • 假设排序表为L[1…n],第i躺排序,即从L[1…n]中选择关键字最小的元素与L(i)交换

    • i每次增加,每趟排序可以确定一个元素的最终位置
      在这里插入图片描述

  • 性能分析

    • 时间复杂度:O(n^2)

    • 空间复杂度:O(1)
      在这里插入图片描述

  • 稳定性

    • 不稳定
      在这里插入图片描述
小结

在这里插入图片描述

堆排序

  • 基本概念
    在这里插入图片描述

      • 堆是一棵完全二叉树,而且满足任何一个非叶结点的值都不大于(或不小于)其左右孩子结点的值
    • 大根堆在这里插入图片描述

      • 每个结点的值都不小于它的左右孩子结点的值
    • 小根堆在这里插入图片描述

      • 每个结点的值都不大于它的左右孩子结点的值
        在这里插入图片描述
  • 实现过程

    • 建大(小)根堆:O(n)在这里插入图片描述

      • 从后向前调整所有非终端结点,使其满足堆的性质[0, ⌊n/2⌋]

      • 检查是否根大于(小于)等于左右孩子,小(大)元素不断下坠(下坠过程需不断检查与左右孩子的大小)在这里插入图片描述

    • 调整大(小)根堆:O(nlog2n)

      • 将最大(小)根结点与最后一个结点互换

      • 按建堆过程调整结点在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
        在这里插入图片描述
        在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
        在这里插入图片描述在这里插入图片描述在这里插入图片描述

  • 性能分析在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
    在这里插入图片描述

    • 时间复杂度:O(nlog2n)

    • 空间复杂度:O(1)

  • 稳定性在这里插入图片描述在这里插入图片描述

    • 不稳定
小结

在这里插入图片描述

在这里插入图片描述

堆的插入删除

插入

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

删除

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

二路归并排序

在这里插入图片描述在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

实现过程

  • 假定待排序表有n个记录,可以看成n个有序子表,每个子表长度1,两两归并,得到⌈n/2⌉个长度为2或1的有序表,再两两归并,直到合并为长度n的有序表

  • 在这里插入图片描述
    在这里插入图片描述在这里插入图片描述在这里插入图片描述
    在这里插入图片描述

    • 性能分析在这里插入图片描述

      • 时间复杂度:O(nlog2n)

      • 空间复杂度:O(n)

    • 稳定性

      • 稳定
    • 特点

      • 比较次数与初始状态无关

      • 只有归并排序O(nlog2n)且稳定
        在这里插入图片描述

基数排序

基本概念

  • 最高位优先(MSD)法:按关键字位权重递减依次逐层划分成若干更小的子序列,最后将所有子序列依次连接成一个有序序列

  • 最低位优先(LSD)法:按关键字位权重递增依次进行排序,最后形成一个有序序列

实现过程

  • 采用多关键字排序思想(即基于关键字各位的大小进行排序的),借助“分配”和“收集”两种操作对单逻辑关键字进行排序,直到所有关键字均已排序完毕
    在这里插入图片描述

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述

性能分析

在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述

  • 时间复杂度

    • 基数排序需要进行k躺分配和收集,一趟分配需要O(n),一趟收集需要O(m),所以时间复杂度为O(k(n+m))
  • 空间复杂度

    • 链式存储(王道):O(m),一趟需要辅助存储空间m(m个桶的头尾指针)

    • 顺序存储:O(n+m),桶+临时存放数组

稳定性

  • 稳定
    在这里插入图片描述

应用

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

  • 关键字便于分k组,即k较小时

  • 每组关键字取值范围不大,即m较少时

  • 元素个数n较大时

补充

  • 对数字排序时,仅能使用最低位优先法,若高位优先,最后排低位时会打乱顺序

排序算法的分析

  • 在这里插入图片描述

  • 王道书中基数排序,d为待排元素的维度,r为基数的个数,空间复杂度王道采用链式存储,故额外空间仅每个桶的头尾指针

结论

  • 若文件初始状态接近有序,则选用直接排序或冒泡排序为宜

  • 要求排序稳定且时间复杂度O(nlog2n),则选用归并排序

  • 若n很大,记录关键字位数较少且可分解时,采用基数排序

  • 当记录信息量较大,为避免消耗大量时间移动记录,可用链表作为存储结构

  • 简单选择排序、堆排序、归并排序的时间性能不随记录序列中关键字的分布而改变

外部排序

在这里插入图片描述

外部排序基本概念

在这里插入图片描述

构造初始“归并段"

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

第一趟归并

在这里插入图片描述

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

第二趟归并

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

第三趟归并

在这里插入图片描述在这里插入图片描述

  • 对大文件进行排序,因为文件中的记录很多、信息量庞大,无法将整个文件复制到内存进行排序

  • 需要将待排序的记录存储在外存上,排序时再把数据一部分一部分地调入内存进行排序,在排序过程中需要多次进行内存和外存的交换

外部排序的方法

  • 基本概念

    • 文件通常是按块存储在磁盘上的,操作系统也按块读写

    • 外部排序过程中的时间代价主要考虑访存次数(I/O次数)

  • 步骤(采用归并排序)

    • 生成r个初始归并段(内部排序)

      • 根据内存缓冲区大小,将外存文件分为r个子文件,依次读入内存并利用内部排序方法进行排序,并将内部有序的子文件重新写回外存
    • 进行s躺k路归并

      • s = ⌈logk r⌉

      • k路归并

        • 将k个归并段的块读入k个输入缓冲区

        • 用归并排序从k个归并段中选出几个最小记录暂存到输出缓冲区中

        • 当输出缓冲区满时,写出外存

        • 性质

          • 每趟归并中,最多只有k个段归并为一个

          • 若总共有m个归并段参与,s趟归并后,得⌈m/k⌉新归并段

          • 若要进行k路归并排序,内存需要1个输出缓冲区 + k个输入

  • 时间开销

    • 读写外存时间+内部排序所需时间+内部归并所需时间
      在这里插入图片描述

优化(都减少归并趟数s,减少磁盘读写次数)

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述在这里插入图片描述在这里插入图片描述

  • 增大归并路数k,进行多路平衡归并

    • 代价1:需要增加相应的输入缓冲区

    • 代价2:每次从k个归并段中选一个最小元素需要(k-1)次关键字比较

  • 减少初始归并段个数r

在这里插入图片描述在这里插入图片描述在这里插入图片描述

多路平衡归并与败者树

  • 在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述

    • 引入

      • 为了减少优化1代价2,减少每次k个归并段找最小关键字的比较次数
    • 思想

      • k个叶结点分布存放k个归并段在归并过程中当前参加比较的记录,非叶结点用了记忆左右子树中“失败者”(记录段号),让胜者往上继续进行比较,直到根结点
    • 性能

      • k路归并的败者树深度⌈log2 k⌉

      • 总的比较次数由(n-1)(k-1)减少到(n-1)⌈log2 k⌉

    • 注意:归并路数k过大时,虽然趟数减少,但读写外存次数仍会增加

置换-选择排序(生成初始归并段)

在这里插入图片描述

  • 在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
    在这里插入图片描述

    • 引入

      • 即优化2:减少初始归并段数量r
    • 实现:如图红字

在这里插入图片描述

在这里插入图片描述

最佳归并树(k叉哈夫曼树)

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述

  • 引入

    • 为减少磁盘I/O次数(归并段读入读出,合并先后次序)
  • 结构概述

    • 叶结点表示初始归并段,权值表示该归并段的长度;非叶结点代表归并形成的新归并段

    • 叶结点到根的路径长度表示其参加归并的趟数

    • 归并树的带权路径长度WPL为归并过程中的总读记录数

    • 归并过程中的磁盘I/O次数 = 归并树的WPL * 2

    • 构造

      • 补充虚段

        • 若(初始归并段数量-1) % (k-1) = 0,说明刚好可以构成严格k叉树,此时无需添加虚段

        • 若(初始归并段数量-1) % (k-1) = u != 0,则需要补充(k-1) - u个虚段

      • 构造k叉哈夫曼树

        • 每次选择k个根结点权值最小的树合并,并将k个根结点的权值之和作为新的根结点的权值

代码

快排

  • 思路:基于分治思想
  1. 确定分界点(取左边界,去中间点,随机取)

  2. 调整区间,分<x与>x两部分分别是[l, j]、[j+1, r]

  3. 递归左右

    •   void quick_sort(vector<int>&q, int l, int r)
        {
            if (l >= r) return;                                        //注意这里是>=
            int i = l - 1, j = r + 1, x = q[l + r >> 1];
            while (i < j)
            {
                while (q[++i] < x);                                  //注意这里无论结果如何i都会+1,故初始化时i=l-1,且才能跳出循环
                while (q[--j] > x);
                if (i < j) swap(q[i], q[j]);
            }
            quick_sort(q, l, j), quick_sort(q, j + 1, r);
        }
      

归并

  • 思路:基于分治思想
  1. 确定分界点: 中间点 mid=l+r>>1

  2. 递归分界点左右

  3. 归并

    •   void merge_sort(int q[], int l, int r)
        {
            if (l >= r) return;                                                           //return边界
            int mid = l + r >> 1;
            merge_sort(q, l, mid);                                                    //排序左半
            merge_sort(q, mid + 1, r);                                             //排序右半
        
            int k = 0, i = l, j = mid + 1;                                          //将i,j分别指向两数组第一个元素
            while (i <= mid && j <= r)                                         //若两数组都没结束,选小的进
                if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
                else tmp[k ++ ] = q[j ++ ];
        
            while (i <= mid) tmp[k ++ ] = q[i ++ ];                     //一数组结束,另外一数组剩下元素依次进
            while (j <= r) tmp[k ++ ] = q[j ++ ];
        
            for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
        }
      

二分查找(可用于折半)

  • 本质:可以划分为满足某种性质与不满足某种性质的两个区间,用二分法可以找到两区间边界的左右两个点。

    •   int bsearch_1(int l, int r)                     //寻找右边界
        {
            while (l < r)
            {
                int mid = l + r + 1 >> 1;           //右边界需+1
                if (q[mid]>k) r = mid-1;             //mid不满足<=,直接将右边界置mid左边
                else l = mid;                               //左边界一点点贴近右边界
            }
            return l;
        }
        int bsearch_2(int l, int r)                   //寻找左边界,同理
        {
            while (l < r)
            {
                int mid = l + r >> 1;
                if (q[mid]<k) l = mid+1;
                else r = mid;
            }
            return l;
        }
      

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/529862.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python单元测试pytest捕获日志输出

使用pytest进行单元测试时&#xff0c;遇到了需要测试日志输出的情况&#xff0c;查看了文档 https://docs.pytest.org/en/latest/how-to/capture-stdout-stderr.html https://docs.pytest.org/en/latest/how-to/logging.html 然后试了一下&#xff0c;捕捉logger.info可以用…

【Qt】网络

目录 一、Udp Socket 二、Tcp Socket 三、HTTP 在进行网络编程之前&#xff0c;需要在项目中的 .pro 文件中添加 network 模块 有时添加之后要手动编译一下项目&#xff0c;使 Qt Creator 能够加载对应模块的头文件 一、Udp Socket 主要的类有两个&#xff1a;QUdpSocket …

Octopus:2B 参数语言模型即可媲美 GPT-4 的函数调用性能

近年来&#xff0c;大语言模型在 PC、智能手机和可穿戴设备的操作系统中应用逐渐成为趋势。 例如&#xff0c;MultiOn (Garg, 2024) 和 Adept AI (Luan, 2024) 等 AI 助理工具&#xff0c;以及 Rabbit R1 (Lyu, 2024) 和 Humane AI Pin (Chaudhri, 2024) 等 AI 消费产品在消费者…

Mac 装 虚拟机 vmware、centos7等,21年网络安全面经分享

链接: https://pan.baidu.com/s/1oZw1cLyl6Uo3lAD2_FqfEw?pwdzjt4 提取码: zjt4 复制这段内容后打开百度网盘手机App&#xff0c;操作更方便哦 centos8 链接: https://pan.baidu.com/s/10KWpCUa2JkwcjYlJZVogKQ?pwdn99a 提取码: n99a 复制这段内容后打开百度网盘手机App&…

电脑总是蓝屏怎么办,电脑总是蓝屏怎么办开不了机

工作离不开电脑&#xff0c;不过电脑经常会出现一些故障让我们崩溃不已&#xff0c;尤其类似电脑蓝屏开不了机这种&#xff0c;总是突然发生&#xff0c;让人猝不及防。那么面对这一情况&#xff0c;相信很多人都是不知道该如何处理的。这里提供两个方法&#xff0c;第一种方法…

网络安全---RSA公钥加密与签名

实验项目&#xff1a;RSA公钥加密与签名实验 1.实验目的 本实验的学习目标是让学生获得 RSA 算法的动手经验。 通过课堂学习&#xff0c;学生应该已经了解 RSA 算法的理论部分&#xff0c; 知道在数学上如何生成公钥、私钥以及如何执行加密、解密和签名生成、验证。 通过使用…

防SSL证书泄露服务器IP教程

在Web CDN&#xff08;内容分发网络&#xff09;中&#xff0c;防止SSL泄露源服务器IP是一个重要的安全考虑。下面是一些建议的方法来实现这一目标&#xff1a; 首先呢&#xff0c;我们隐藏服务器IP不要使用服务器IP生成的SSL证书&#xff0c;不然会泄露我们的服务器IP。 泄露了…

【BEV 视图变换】Fast-Ray 基于查找表LUT、多视角到单个三维体素转换

前言 在BEV感知方案中&#xff0c;将图像特征转为BEV特征&#xff0c;是关键的一步&#xff0c;这过程也称为2D视图变换。 本文介绍Fast-Ray方法&#xff0c;在Fast-BEV中被提出的&#xff0c;它是一种轻量级并且易于部署的视图转换方法&#xff0c;用于快速推理。 通过将多…

.net 6 集成NLog

.net 6 webapi项目集成NLog 上代码step 1 添加nugetstep 2 添加支持step 3 添加配置文件 结束 上代码 step 1 添加nuget 添加nuget 包 Roc step 2 添加支持 修改program.cs var builder WebApplication.CreateBuilder(args); // 添加NLog日志支持 builder.AddRocNLog();ste…

java中static关键字(尚未完善)

文章目录 static关键字static可修饰static方法举例static代码块拓展其他链接 static关键字 加载顺序类是构建对象的模板&#xff0c;一个类多个对象static修饰的方法或者变量都属于类&#xff0c;类独有的 static可修饰 修饰变量&#xff08;属于类变量&#xff0c;被创建出来…

极狐GitLab 如何在 helm 中恢复数据

本文作者&#xff1a;徐晓伟 GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署极狐GitLab。 本文主要讲述了如何在极狐GitLab …

mysql运维知识总结

1. 日志 1.1 错误日志 错误日志是 MySQL 中最重要的日志之一&#xff0c;它记录了当 mysqld 启动和停止时&#xff0c;以及服务器在运行过 程中发生任何严重错误时的相关信息。当数据库出现任何故障导致无法正常使用时&#xff0c;建议首先查看此日志。 该日志是默认开启的&…

Linux: 工具: tshark 抓到了收方向的ESP明文包?

根据这个描述&#xff0c;看着是正常的&#xff0c; 抓到包之后&#xff0c;可以方便的分析问题&#xff0c;省去在wireshark里解码的问题。 经过调查发现是内核将ESP解开之后&#xff0c;如果是tunnel模式&#xff0c;内核又重新将skb丢给了interface去做处理。这样tshark/tcp…

搭建Grafana+Prometheus监控Spring Boot应用

Spring项目改造 maven依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId> </dependency><dependency><groupId>io.micrometer</groupId><artif…

Linux服务器上搭建深度学习环境(安装anaconda、创建虚拟环境、安装pytorch)

Linux服务器的搭配 Linux服务器上安装anaconda创建虚拟环境linux上安装pytorchxshell连接服务器 Linux服务器上安装anaconda 链接 创建虚拟环境 参考教程&#xff1a;此处 linux上安装pytorch 链接 xshell连接服务器 链接

本地项目提交 Github

工具 GitIdeaGithub 账号 步骤 使用注册好的 Github 账号&#xff0c;登陆 Github&#xff1b; 创建 Repositories (存储库)&#xff0c;注意填写图上的红框标注&#xff1b; 创建完成之后&#xff0c;找到存储库的 ssh 地址或 https 地址&#xff0c;这取决于你自己的配置…

JRT判断数据是否存在优化

有一种业务情况类似下图&#xff0c;质控能做的项目是仪器关联的项目。这时候维护质控物时候开通项目时候要求加载仪器项目里面的项目&#xff08;没有开通的子业务数据的部分&#xff09;。对右边已经开通的部分要求加载仪器项目里面的项目&#xff08;有开通业务子数据的部分…

微信小程序使用iconfont

进入iconfont&#xff0c;添加至项目 进入项目&#xff0c;点击生成代码&#xff0c;或更新代码 点击打开样式 复制内容到小程序的style文件夹下 最后引入到app.wxss

鹅厂实习offer

#转眼已经银四了&#xff0c;你收到offer了吗# 本来都打算四月再投实习了&#xff0c;突然三月初被wxg捞了&#xff08;一年前找日常实习投的简历就更新了下&#xff09;&#xff0c;直接冲了&#xff0c;流程持续二十多天&#xff0c;结果是运气还不错&#xff0c;应该是部门比…

C# 之 Task、async和 await 、Thread 的简单整理

1、异步方法(async/await) 在 C# 5.0 中出现的 async 和 await &#xff0c;让异步编程变得更简单。 此方法利用了 .NET Framework 4.5 及更高版本、.NET Core 和 Windows 运行时中的异步支持。 编译器可执行开发人员曾进行的高难度工作&#xff0c;且应用程序保留了一个类似…