每日OJ题_两个数组dp⑤_力扣10. 正则表达式匹配

目录

力扣10. 正则表达式匹配

解析代码


力扣10. 正则表达式匹配

10. 正则表达式匹配

难度 困难

给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 '.' 和 '*' 的正则表达式匹配。

  • '.' 匹配任意单个字符
  • '*' 匹配零个或多个前面的那一个元素

所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。

示例 1:

输入:s = "aa", p = "a"
输出:false
解释:"a" 无法匹配 "aa" 整个字符串。

示例 2:

输入:s = "aa", p = "a*"
输出:true
解释:因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。

示例 3:

输入:s = "ab", p = ".*"
输出:true
解释:".*" 表示可匹配零个或多个('*')任意字符('.')。

提示:

  • 1 <= s.length <= 20
  • 1 <= p.length <= 20
  • s 只包含从 a-z 的小写字母。
  • p 只包含从 a-z 的小写字母,以及字符 . 和 *
  • 保证每次出现字符 * 时,前面都匹配到有效的字符
class Solution {
public:
    bool isMatch(string s, string p) {

    }
};

解析代码

状态表示:

对于两个字符串之间的 dp 问题,一般的思考方式如下:

        选取第⼀个字符串的 [0, i] 区间以及第⼆个字符串的 [0, j] 区间当成研究对象,结合题目的要求来定义状态表示。然后根据两个区间上最后一个位置的字符,来进行分类讨论,从而确定状态转移方程。

dp[i][j] 表示:字符串 p 的 [0, j] 区间和字符串 s 的 [0, i] 区间是否可以匹配。


状态转移方程:

根据最后一个位置的元素,结合题目要求,分情况讨论:

  • 当 p[j] 不是特殊字符,且不与 s[i] 相等时,无法匹配。
  • 当 s[i] == p[j] 或 p[j] == '.' 的时候,此时两个字符串匹配上了当前的一个字符, 只能从 dp[i - 1][j - 1] 中看当前字符前面的两个子串是否匹配。只能继承上个状态中的匹配结果, dp[i][j] = dp[i - 1][j - 1] ;
  • b. 当 p[j] == '*' 的时候,和力扣44. 通配符匹配稍有不同的是,上道题 "*" 本身便可匹配 0 ~ n 个字符,但此题是要带着 p[j - 1] 的字符⼀起,匹配 0 ~ n 个和 p[j - 1] 相同的字符。此时,匹配策略有两种选择:
  1. 一种选择是: p[j - 1]* 匹配空字符串,直接继承状态 dp[i][j - 2] ,此时 dp[i][j] = dp[i][j - 2] ;
  2. 另一种选择是: p[j - 1]* 向前匹配 1 ~ n 个字符(与力扣44. 通配符匹配不同,此时p[j - 1]与s[i] 要相等 或者 p[j - 1] 为点),直至匹配上整个 s 串。此时相当于从 dp[k][j - 2] (0 < k <= i) 中所有匹配情况中,选择性继承可以成功的情况。此时 dp[i][j] = dp[k][j - 2] (0 < k <= i 且 s[k]~s[i] = p[j - 1]) ;

三种情况加起来,就是所有可能的匹配结果。 综上所述,状态转移方程为:

  • 当s[i] == p[j] 或 p[j] == '.' 时: dp[i][j] = dp[i][j - 1] ;
  • 当 p[j] == '*' 时,有多种情况需要讨论: dp[i][j] = dp[i][j - 2] ; dp[i][j] = dp[k][j - 1] (0 <= k <= i) ;

这个状态转移方程时间复杂度为O(N^3),要想想优化。


        优化:当发现计算一个状态的时候,需要一个循环才能搞定的时候,我们要想到去优化。优化的方向就是用一个或者两个状态来表示这一堆的状态。通常就是把它写下来,然后用数学的方式做一下等价替换:

当 p[j] == '*' 时,状态转移方程为:dp[i][j] = dp[i][j - 2] || dp[i - 1][j - 2] || dp[i - 2][j - 2] ......

        发现 i 是有规律的减小的,因此我们去看看 dp[i - 1][j] ,列出 dp[i - 1][j] = dp[i - 1][j - 1] || dp[i - 2][j - 1] || dp[i - 3][j - 1] ......

        然后就能发现, dp[i][j] 的状态转移方程里面除了第一项以外,其余的都可以用dp[i -1][j] 替代。因此优化我们的状态转移方程为: dp[i][j] = dp[i][j - 2] || dp[i - 1][j]。


初始化、填表顺序、返回值:

初始化:空串是有研究意义的,因此我们将原始 dp 表的规模多加上一行和一列,表示空串。由于 dp 数组的值设置为是否匹配,为了不与答案值混淆,我们需要将整个数组初始化为false 。由于需要用到前一行和前一列的状态,初始化第一行、第一列即可。

dp[0][0] 表示两个空串能否匹配,答案是显然的, 初始化为 true 。

第一行表示 s 是一个空串, p 串和空串只有一种匹配可能,即 p 串表示为 "任一字符+*" ,此时也相当于空串匹配上空串。所以可以遍历 p 串,把所有前导为 "任一字符+*" 的 p 子串和空串的 dp 值设为 true 。

第一列表示 p 是一个空串,不可能匹配上 s 串,跟随数组初始化成false即可。

填表顺序:从上往下填写每一行,每一行从左往右,最后返回dp[m][n]。

class Solution {
public:
    bool isMatch(string s, string p) {
        // dp[i][j]表示字符串p的[0, j]区间和字符串s的[0, i]区间是否可以匹配
        int m = s.size(), n = p.size();
        s = " " + s, p = " " + p;
        vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));
        dp[0][0] = true;
        for(int j = 2; j <= n; j += 2)
        {
            if(p[j] == '*')
                dp[0][j] = true;
            else
                break;
        }
        for(int i = 1; i <= m; ++i)
        {
            for(int j = 1; j <= n; ++j)
            {
                if(s[i] == p[j] || p[j] == '.')
                {
                    dp[i][j] = dp[i - 1][j - 1];
                }
                else if(p[j] == '*')
                {   // j-1为点 或者 和s[i]相等才可以匹配dp[i - 1][j]
                    if(p[j - 1] == '.' || p[j - 1] == s[i])
                        dp[i][j] = dp[i][j - 2] || dp[i - 1][j];
                    else // 匹配空串的
                        dp[i][j] = dp[i][j - 2];
                }
            }
        }
        return dp[m][n];
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/529465.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

部署 GlusterFS 群集

目录 一、GFS部署 1.1.环境 1.2.更改节点名称 1.3.节点进行磁盘挂载&#xff0c;安装本地源 1.4.添加节点创建集群 1.5.根据规划创建卷 1.6. 部署gluster客户端 1.7. 破坏性测试 挂起 node2 节点或者关闭glusterd服务来模拟故障 复制卷&#xff0c;在node3和no…

基于springboot+vue+Mysql的药品商超管理系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

c++ 谷歌glog日志库使用

效果如图&#xff1a; 本次使用qt环境演示&#xff0c;相关库文件和头文件下载链接&#xff1a;https://download.csdn.net/download/bangtanhui/89108477 将相关库文件和头文件&#xff0c;丢到工程目录下 然后需要在工程pro文件当中引入库文件和头文件&#xff1a; …

LMDeploy 推理部署工具

一. 大模型部署面临的挑战 1. 计算量巨大 大模型参数量巨大&#xff0c;前向推理时需要进行大量计算。 2. 内存开销巨大 大模型在推理过程中&#xff0c;以FP16为例&#xff0c;20B模型仅加载参数就需40G显存&#xff0c;175B模型更是需要350G显存。同时在推理过程中&#xff…

JVM内存模型深度剖析

JDK体系结构 Java语言的跨平台特性 JDK整体结构及内存模型 JVM虚拟机 JVM主要由以下三个部分组成 类装载子系统:负责将Java类文件加载到运行时数据区中.并在运行时由类加载器创建Java类对象.运行时数据区:运行时数据区是JVM用于存储数据的内存区域.它包括方法区,堆,栈,本地方…

使用VPN时,Java程序无法访问远程网络的解决办法

应用场景&#xff1a; 电脑连接VPN之后&#xff0c;Java程序无法连接远程服务&#xff0c;比如第三方接口、远程数据库连接、远程微服务等。我个人遇到的情况有连接海康威视SDK&#xff0c;influxdb以及一些微服务。 解决办法&#xff1a; 启动Java时加入参数&#xff1a;-D…

ChatGPT与生成式AI:教育领域内新的浪潮与挑战

随着ChatGPT和其他生成式AI技术&#xff0c;如GPT-3.5、GPT-4的出现&#xff0c;我们正见证教育领域一场前所未有的变革浪潮。这些技术不仅推动了教育方式的进步&#xff0c;也为学习者带来了全新的机遇和挑战。 NO.1教育变革的新浪潮 生成式AI技术&#xff0c;特别是ChatGPT&…

Microsoft Visio 参与者 [actor] - 人的形状图标

Microsoft Visio 参与者 [actor] - 人的形状图标 1. 更多形状 -> 搜索形状2. 参与者References 1. 更多形状 -> 搜索形状 2. 参与者 References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

【RAG实践】基于LlamaIndex和Qwen1.5搭建基于本地知识库的问答机器人

什么是 RAG LLM 会产生误导性的 “幻觉”&#xff0c;依赖的信息可能过时&#xff0c;处理特定知识时效率不高&#xff0c;缺乏专业领域的深度洞察&#xff0c;同时在推理能力上也有所欠缺。 正是在这样的背景下&#xff0c;检索增强生成技术&#xff08;Retrieval-Augmented…

(学习日记)2024.04.11:UCOSIII第三十九节:软件定时器

写在前面&#xff1a; 由于时间的不足与学习的碎片化&#xff0c;写博客变得有些奢侈。 但是对于记录学习&#xff08;忘了以后能快速复习&#xff09;的渴望一天天变得强烈。 既然如此 不如以天为单位&#xff0c;以时间为顺序&#xff0c;仅仅将博客当做一个知识学习的目录&a…

自动驾驶中的多目标跟踪_第四篇

自动驾驶中的多目标跟踪:第四篇 附赠自动驾驶学习资料和量产经验&#xff1a;链接 在上篇&#xff0c;我们得到了杂波背景下单目标状态的后验概率表达式。在不进行近似的情况下&#xff0c;是无法应用到实际场景中的。因此&#xff0c;在这一节&#xff0c;我们来讨论如何进行…

【Java 刷题记录】双指针

双指针 1. 移动零 283. 移动零 - 力扣&#xff08;LeetCode&#xff09; 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: n…

anaconda命令行创建虚拟环境并为其安装jupyter notebook同时指定jupyter notebook保存位置

查看有哪些虚拟环境&#xff08;一个环境一个版本的python或者其他库&#xff09; winr快捷键 输入cmd conda env list应该是进入conda的安装路径&#xff0c;但是我们已经添加环境变量 可以看到只有base默认的环境 我们现在新建虚拟环境 python版本为你需要的 conda create -…

Java 那些诗一般的 数据类型 (下篇)

本篇会加入个人的所谓鱼式疯言 ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. &#x1f92d;&#x1f92d;&#x1f92d;可能说的不是那么严谨.但小编初心是能让更多人能接…

Redis系列之主从复制集群搭建

在上一篇博客&#xff0c;我们已经知道怎么搭建一个redis单机版&#xff0c;这篇博客基于之前的基础&#xff0c;来搭建一个redis主从同步&#xff0c;本博客框架是一主二从&#xff0c;一个主节点&#xff0c;其它两个从节点 实验环境 CentOS7Xshell6XFtp6Redis6.2.2 主从关…

Java特性之设计模式【外观模式】

一、外观模式 概述 外观模式&#xff08;Facade Pattern&#xff09;隐藏系统的复杂性&#xff0c;并向客户端提供了一个客户端可以访问系统的接口。这种类型的设计模式属于结构型模式&#xff0c;它向现有的系统添加一个接口&#xff0c;来隐藏系统的复杂性 这种模式涉及到一…

未来的技术发展趋势

文章目录 前言一、人工智能技术势必聚焦安全能力二、单云环境逐渐让位于多云环境三、后量子密码或将在美大范围普及总结前言 2023 年,与网络空间安全息息相关的人工智能等技术发展迅猛,新的信息安全时代已然拉开大幕。在目睹了 ChatGPT、“星链”和量子通信等技术展现出的巨…

python画图Matplotlib和Seaborn

python画图Matplotlib和Season 一、Matplotlib1、介绍2、安装3、内容二、Seaborn1、介绍2、安装3、内容一、Matplotlib Matplotlib官网 1、介绍 Matplotlib 是一个 Python 的绘图库,用于创建高质量的二维图表和一些基本的三维图表。它广泛应用于科学计算、数据分析、工程学和…

Fecify 商品标签功能

关于商品标签 商品标签是指商家可以在展示商品时&#xff0c;自己创建一个自定义标签&#xff0c;可自定义某个关键词或短语。这样顾客在浏览商城时&#xff0c;只需要通过标签就能看到更直观的展示信息。 商品标签可以按照用户的属性、行为、偏好等进行分类&#xff0c;标签要…

【2024年5月备考新增】《软考案例分析答题技巧(2)进度、成本》

2.3 项目进度管理 项目进度管理过程:规划进度管理-定义活动-排列活动顺序-估算活动持续时间-制定进度计划-控制进度。 紧前关系绘图法 紧前关系绘图法(前导图法、PDM、单代号网络图、AON):利用节点表示活动,用箭线表示活动逻辑。 箭线图法 箭线图法(ADM、双代号网络…