OSPF防环文档

OPSF在区域内会产生俩类LSA:Router LSA ,Network LSA

路由器以自己为树根构建最短路径树 ,这里的最短路径树按两步形

成,第一步,仅考虑路由器和传输网络之间的连接。通过 Dijkstra 算法,根据链路状态数据库的子集形成树。第二步,考虑末节网络连接, 作为叶子加入树。

区域内部OSPF对网络是通过Router LSA ,Network LSA来描述网络的,最终路由器收到LSA构建出LSDB。

  LSDB通过描述一个有向线段图来描述网络拓扑结构,该有向图的端点有三种类型:路由器节点,Stub网段和Transit网段

Router LSA使用Link ID,Data,Type和Metric描述一条链路

类型有四种

  Stub网段表示该网段只有数据入口,例如一个Loopback接口就是一个Stub网段。

此胶片描述了路由器节点和Stub网段的表示方式。

Cost表示从一个端点到另一个端点的开销,该参数可以在OSPF接口上配置,表示数据离开该接口(出接口)的开销。


 

 Transit网段有能力转发既不是本网段产生的,也不以本网段做为目的地的数据。

有至少两台路由器的广播型网段或NBMA网段就是一种Transit网段。从路由器到所连Transit网段的开销值就是连接到这个网段的接口所配置的开销值。

从一个Transit网段到连接到这个网段的路由器的开销为0。(称为伪节点)

 

在描述点到点接口的Router-LSA中:

  1. 通告一个到邻居路由器的点到点链接,Link ID设置为对端的Router ID,Data设置为本地接口的IP地址;
  2. 通告一个到该点到点网段的Stub连接,Link ID设置为该点到点网段的网络号,Data设置为该点到点网段的网络掩码
  3. 上述两个连接的Cost值均为该点到点接口上的Cost值。

 

LSDB描述两接口处于不同网段的点到点网段的规则如下: 两台路由器经由两条有向线段直接相连,每个方向一条。两个接口的网段被表示成Stub网段。
每个路由器通告一个Stub连接到该路由器所连的网段。

 

 LSDB描述两接口处于同一网段的点到点网段的规则如下: 两台路由器经由两条有向线段直接相连,每个方向一条。连接两个接口的网段被表示成Stub网段。

两个路由器同时通告Stub连接到该PPP网段。

 

  在描述广播型或NBMA型接口的Router-LSA中:

  1. 如果接口状态是Waiting,或者该网段上只有一个运行OSPF的路由器,或者该网段上没有DR,则通告一个通往该网段的Stub链接,Link ID设置为该网段的IP网络号,Link   Data设置为该网段的网络掩码; 其他情况下,通告一个通往该网段的Transit连接,Link ID设置为DR的接口IP地址,Link Data设置为本地接口的IP地址
  2. 连接的开销值为接口的开销。

 

 

 

在描述广播型网段或者NBMA网段的Network-LSA中:

Link State ID设置为DR的接口IP地址。

Net mask设置为该网段的网络掩码。

Link State ID和Net mask做与运算,即可得出该网段的IP网络号。

在该LSA中,还包含一个连接到该网段的路由器列表。

从一个Transit网段到所连接的路由器的连接没有开销。

 

    计算过程 

 

根据上文描述上图拓扑在LSA传递完毕后生成有向图 

 

第一阶段

计算Transit节点,忽略Stub节点,生成一个最短路径树

第二阶段

只计算Stub节点,将Stub网段挂到最短路径树上去

  计算过程中首先初始化最短路径树,RTA将自己做为根节点添加到最短路径树上

 

RTA将自己添加到最短路径树上之后,检查自己生成的Router-LSA,对 于该LSA中所描述的每一个连接,如果不是一个Stub连接,就把该连接 添加到候选列表中,端点ID为Link ID,到根端点的开销为LSA中描述的Metric值。本例中,添加端点4.4.4.4和2.2.2.2。 

将候选列表中到根端点开销最小的端点移到最短路径树上 

 

 

当有新节点添加到最短路径树上的时候,则检查LS ID为新节点的link-id ID的LSA,本例中检查LS ID为2.2.2.2的LSA。

如果LSA中所描述的连接的Link ID在最短路径树上已经存在,则忽略该连接。本例中,Link ID为1.1.1.1的连接被忽略,只有10.3.1.1的连接被添加到候选列表中。到根端点的开销设置为此连接的Metric值(本例中此连接的Metric值为1)与父端点(本例中此连接的父端点为2.2.2.2)到根端点的开销(本例中此开销值为48)之和。

 

将候选列表中到根端点的开销最小的端点移动到最短路径树上,本例中,将10.3.1.1移到最短路径树上。 

 

 

检查LS ID为最新添加节点的端点ID的LSA,本例中检查LS ID为10.3.1.1的LSA。

在所描述的连接中,忽略2.2.2.2,将3.3.3.3和4.4.4.4添加到候选列表中。从Transit网段到所连路由器的开销为0。

如果在候选列表中出现两个端点ID一样但是到根端点的开销不一样的端点,则删除到根端点的开销大的端点。

 

将候选列表中到根端点的开销最小的端点移动到最短路径树上,本例中,将3.3.3.3移到最短路径树上 

检查LS ID为最新添加节点的端点ID的LSA,本例中检查LS ID为3.3.3.3 的LSA。

本例中,没有新端点被添加到候选列表中。

将候选列表中到根端点的开销最小的端点移动到最短路径树上,本例中,将4.4.4.4移到最短路径树上。

检查LS ID为最新添加节点的端点ID的LSA,本例中检查LS ID为4.4.4.4 的LSA。

本例中,没有新端点被添加到候选列表中。

如果在此时候选列表为空,则计算最短路径树的第一阶段结束。

 

检查每个路由器端点的Router-LSA,计算Stub网段。

本例中,首先检查RTA的Router-LSA,共有三个Stub网段

OSPF区域间防环

Type-3 LSA及Type-4 LSA的防环

1.OSPF要求所有的非0区域必须与骨干区域直接相连,区域间路由需经由骨干区域中转。

OSPF要求所有的非0区域必须与骨干区域直接相连,区域间(Inter-Area Route)路由需经由骨干区域中转。这个要求使得区域间的路由传递不能发生在两个非0的区域之间,这在很 大程度上规避了区域间路由环路的发生,也使得OSPF的区域架构在逻辑上形成了一个类似星型的拓扑,如下图所示。

2.ABR只能够将其所连接的区域的区域内部路由注入到Area0,但是可以将区域内部路由及 区域间的路由注入到非0常规区域。ABR从非骨干区域收到的Type-3 LSA不能用于区域间路由的计算。

OSPF对ABR有着严苛的要求,区域间的路由传递的关键点在于ABR对Summary LSA的处理。

在上图中,如果R3是一台普通的OSPF路由器(不是ABR),例如当它与R2没有OSPF邻居关系 时,它会根据R4在Area2中泛洪的Type-3 LSA计算出1.1.1.0/24路由并将路由加载进路由表中。但是当R3与R2建立起OSPF邻接关系后,R3在Area0中就有了一个活跃的全毗邻连接,此 时如果它把描述1.1.1.0/24路由的Type-3 LSA再注入回Area0,那么就会带来潜在环路的风险,如下图所示:

因此当一台ABR在非Area0的区域中收到Type-3 LSA时,虽然它会将其装载进LSDB,但是该路由器不会使用这些Type-3 LSA进行路由计算,当然它更不会将这些Type-3 LSA再注入回Area0中。

这里有一个有意思的细节,就是如果R3连接R2的接口虽然激活了OSPF(而且属于Area0), 但是不与R2形成邻接关系(例如R2连接R3的接口不激活OSPF),那么此时R3其实并不算是 严格意义上的ABR(虽然它产生的Type-1 LSA中B-bit会被置位,但是它在Area0中并没有全毗邻的邻居),因此它会将Area2内收到的Type-3 LSA用于区域间路由的计算,所以在R3的路由表中能看到1.1.1.0/24的区域间路由(下一跳为R4),但是一旦R2-R3之间的邻接关系 建立起来,R3将不能再使用R4下发的Type-3 LSA计算路由,而仅能使用从Area0中收到

的、R 2下发的Type-3 LSA进行区域间路由计算,所以此时R3路由表中1.1.1.0/ 24路由的下一跳为R2,而且即使这条路径的Cost要比从R4走更大(例如将R3连接R   2的接口Cost调大),R3也始终不会走R4到达1.1.1.0/24,除非R2挂掉,或者R2-R3丢失邻接关系。这个现 象在思科、华为的真机上验证过了,两者均是如此实现。

​​​​​​​3.ABR不会将描述一个Area内部的路由信息的Type-3 LSA再注入回该区域中。

实际上,OSPF区域间路由的传递行为,很有点距离矢量路由协议的味道。以下图为例,在Area1中,R1及R2都会泛洪Type-1 LSA、Type-2 LSA,两台路由器都能够根据这些LSA计算 区域内路由,而R2作为ABR还担负着另一个责任,就是向Area0通告区域间的路由,实际上 它是向Area0中注入用于描述Area1内路由的Type-3 LSA,而这些Type-3 LSA是不会发回Area1的——是的,类似水平分割行为对吧?接下来R3利用这些Type-3 LSA计算出了区域间的路由,并且为Area2注入新的Type-3 LSA用于描述区域间的路由,而这些Type-3 LSA同样的不会被注入回Area0。

R2 在向Area0通告Type-3 LSA,为每条区域间路由携带上Cost值,这个值就是它自己到达各个目标网段的Cost,而R3收到这些Type-3 LSA并计算路由时,路由的Cost就是在R2所通告的Cost值的基础上,加上R3自己到R2的Cost值,然后,R3向R4通告这些区域间的路由时也 携带者自己到达目标网段的Cost,而R4到达目标网段的Cost则是在R3的通告值基础上累加 自己到R3的Cost——典型的距离矢量行为。

Type-4 LSA实际上与Type-3 LSA都是Summary LSA,只不过一个是Network Summary LSA——用于描述网段路由,另一个则是ASBR Summary LSA——用于描述ASBR,他们使用的防环机制是一致的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/528917.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于知识图谱的推理:智能决策与自动发现

基于知识图谱的推理:智能决策与自动发现 一、引言 在今天这个数据驱动的时代,我们经常会听到人们提及“知识图谱”这个词。知识图谱,作为一种结构化知识的表达方式,已经成为智能系统不可或缺的一部分,它通过连接大量的…

App Inventor 2 SQLite 拓展

SQLite 拓展 此SQLite 拓展由中文网开发及维护,与 TaifunSQLite 功能类似,但TaifunSQLite是收费的,美刀。 文档及拓展下载地址: App Inventor 2 SQLite 拓展:超流行兼容主流SQL语法的迷你本地数据库引擎 App Invento…

【数据结构与算法篇】单链表及相关OJ算法题

【数据结构与算法篇】单链表及相关OJ算法题 🥕个人主页:开敲🍉 🔥所属专栏:数据结构与算法🍅 🌼文章目录🌼 1. 单链表的实现(近300行实现代码) 1.1 SList.h 头文件的声明 1.2 SLi…

码蹄集部分题目(第五弹;OJ赛2024年第10期)

🐋🐋🐋竹鼠通讯(钻石;分治思想;模板题:就算几何平面点对问题) 时间限制:3秒 占用内存:128M 🐟题目描述 在真空中,一块无限平坦光滑…

Java毕业设计 基于SpringBoot vue流浪动物救助网站

Java毕业设计 基于SpringBoot vue流浪动物救助网站 SpringBoot 流浪动物救助网站 功能介绍 首页 图片轮播 动物领养/捐赠 留言 论坛 发布帖子 公告信息 商品信息 添加购物车 立即购买 寻宠请求 购物车 注册登录 个人中心 余额充值 收货地址 动物收藏 动物领养审核 商品订单 …

最简洁的Docker环境配置

Docker环境配置 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Mac、Linux或Windows操作系统的机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不…

基于Java+SpringBoot+Vue美容院业务管理系统(源码+文档+部署+讲解)

一.系统概述 悦己美容院后台管理系统的目的是让使用者可以更方便的将人、设备和场景更立体的连接在一起。能让用户以更科幻的方式使用产品,体验高科技时代带给人们的方便,同时也能让用户体会到与以往常规产品不同的体验风格。 与安卓,iOS相比…

100道面试必会算法-20-全排列

100道面试必会算法-20-全排列 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]示例 2&#…

Vue的模块化开发初探

文章目录 Vue的模块化开发初探一 概述二 步骤2.1 下载必须模块2.2 安装Live Server插件2.3 编写代码2.4 运行结果 三 总结四 参考资料 Vue的模块化开发初探 一 概述 Vue是一个渐进式JavaScript框架,可以按需引入部分功能,而不必全量引入整个框架。 二…

20240324-1-集成学习面试题EnsembleLearning

集成学习面试题 1. 什么是集成学习算法? 集成学习算法是一种优化手段或者策略,将多个较弱的模型集成模型组,一般的弱分类器可以是决策树,SVM,KNN等构成。其中的模型可以单独进行训练,并且它们的预测能以某…

python安装(window环境)

1.下载安装文件 首先推荐去官网下载最新版本,但是我这边官网打开很慢,而且下载的时候也很慢,翻墙也不行。所以我最终选择了非官方下载。 官网:Download Python | Python.org 中文官网:Python下载 | Python中文网 官…

牛客周赛39 --- G -- 小红不想做平衡树 -- 题解

小红不想做平衡树: 思路解析: 好数组的定义为 恰好翻转一个区间是得,这个区间变为升序的。 那么就有五种情况: 1.本身数组就升序的, 翻转一个长度为1的区间后,数组仍为升序 2.本身数组就降序的&#xf…

跨框架探索:React Redux 和 Vuex 对比分析快速掌握React Redux

React Redux 和 Vuex 都是前端状态管理库,分别用于 React 和 Vue.js 框架。 它们都提供了一套规范的状态管理机制,帮助开发者更好地组织和管理应用状态。下面是它们的一些异同点: 相同点: 中心化状态管理:两者都提…

环形链表 II - LeetCode 热题 26

大家好!我是曾续缘😛 今天是《LeetCode 热题 100》系列 发车第 26 天 链表第 5 题 ❤️点赞 👍 收藏 ⭐再看,养成习惯 环形链表 II 给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环&#xf…

docker部署coredns服务器

创建文件夹 mkdir /coredns/config/添加一个CoreDNS配置文件 cat >/coredns/config/Corefile<<EOF.:53 {forward . 114.114.114.114:53log}EOF启动docker docker run -d --name coredns --restartalways \-v /coredns/config:/etc/coredns \-p 53:53/udp \regist…

HarmonyOS 开发-短视频切换实现案例

介绍 短视频切换在应用开发中是一种常见场景&#xff0c;上下滑动可以切换视频&#xff0c;十分方便。本模块基于Swiper组件和Video组件实现短视频切换功能。 效果图预览 使用说明 上下滑动可以切换视频。点击屏幕暂停视频&#xff0c;再次点击继续播放。 实现思路 使用Sw…

一文了解ERC404协议

一、ERC404基础讲解 1、什么是ERC404协议 ERC404协议是一种实验性的、混合的ERC20/ERC721实现的&#xff0c;具有原生流动性和碎片化的协议。即该协议可让NFT像代币一样进行拆分交易。是一个图币的互换协议。具有原生流动性和碎片化的协议。 这意味着通过 ERC404 协议&#xf…

混淆时,编译器优化导致通过反射赋值的类被清空问题

有几个反射赋值的类&#xff0c;之前一直是 keep 整个class的&#xff0c;现在要求对class的路径进行混淆。 当我启用混淆后&#xff0c;发现整个类的内容被清空了。 // 原始的类内容public class BaseLoadData {property("config_data1")public static String dat…

R语言数据可视化:ggplot2绘图系统

ggpolt2绘图系统被称为R语言中最高大上的绘图系统&#xff0c;使用ggplot2绘图系统绘图就像是在使用语法创造句子一样&#xff0c;把数据映射到几何客体的美学属性上。因此使用ggplot2绘图系统的核心函数ggplot来绘图必须具备三个条件&#xff0c;数据data&#xff0c;美学属性…

如何开始用 C++ 写一个光栅化渲染器?

光栅化渲染器是计算机图形学中最基础且广泛应用的一种渲染技术&#xff0c;它将三维模型转化为二维图像。下面我们将逐步介绍如何使用C语言从零开始构建一个简单的光栅化渲染器。 一、理解光栅化渲染原理 光栅化是一种将几何数据&#xff08;如点、线、三角形&#xff09;转换…