文章目录
- 1. 条件
- 2. 模型分类
- 3. SPSS处理时间序列
1. 条件
1.使用于具有时间、数值两种要素
2.数据具有周期性可以使用时间序列分解
2. 模型分类
- 叠加模型【Y=T+S+C+I】
序列的季节波动变化越来越大,反映变动之间的关系发生变化 - 乘积序列【Y=TSC*I】
时间序列波动保持恒定,可以使用叠加模型
3. SPSS处理时间序列
- 数据预处理——开头结尾有缺失值,直接删掉即可
- 定义时间变量:数据-定义日期和时间
- 画序列图:分析-时间序列预测-序列图
- 描述:【峰值、季节性\周期性、趋势】
- 若具有季节性\周期性,则对序列分解:分析-时间序列预测-季节性分解。
【模型类型:乘、加】【移动平均值:所有点相等(T为奇)、端点按0.5加权(T为偶)】 - 表格中新添加的四列分别为:
【ERR_1】不规则变动(残差或误差值),为I
【SAS_1】季节性调整后系列,为T+C+I
【SAF_1】季节性调整因子,为S
【STC_1】趋势循环成分,为T+C
【叠加模型中季节因子加和为0】—> 平均销量水平为0
eg:
得到这个图,便可以分析:第一二季度的季节因子为正,第三四季度的季节因子为负,说明该产品一二季度的平均销量要高于三四季度;第二季度的平均销量要高于全年平均水平20.930件,第四季度的平均销量要低于平均销量的19.727件。