FJSP:美洲狮优化算法(Puma Optimizar Algorithm ,POA)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

一、柔性作业车间调度问题

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),是一种经典的组合优化问题。在FJSP问题中,有多个作业需要在多个机器上进行加工,每个作业由一系列工序组成,每个工序需要在特定的机器上完成。同时,每个机器一次只能处理一个工序,且每个工序的处理时间可能不同。

FJSP问题的目标是找到一个最优的作业调度方案,使得所有作业的完成时间最小化。这个问题的难点在于需要考虑到多个作业、多个机器和多个工序之间的复杂关系,并且需要在有限的时间内找到最优解。

解决FJSP问题的方法包括启发式算法、精确算法和元启发式算法等。启发式算法通过一系列规则和策略来生成调度方案,常见的方法有遗传算法、模拟退火算法和禁忌搜索算法等。精确算法则通过穷举搜索或者动态规划等方法来找到最优解,但在实际应用中可能面临计算复杂度过高的问题。元启发式算法则结合了多种启发式算法和精确算法的优点,通过组合不同的方法来求解FJSP问题。
FJSP问题的难点主要体现在以下几个方面:

  1. 组合爆炸:FJSP问题中,每个工件都有多个工序需要完成,而每个工序都有多个可选的机器可以执行。这导致了组爆炸的问题,可能的调度方案数量非常庞,难以穷举所有可能性。

  2. 优化目标多样:FJSP问题通常有多个优化目标,如最小化总加权完成时间、最小化总延迟时间等。这些目标之间可能存在冲突,使找到一个全局最优解变得困难。

  3. 资源约束:FJSP问题中,每个机器在同一时间只能执行一个工序,且每个工序需要一定的时间和资源。这些资源约束增加了问题的复杂性,需要在满足约束条件的前提下进行调度。

  4. 实时性要求:在实际生产中,FJSP问题通常需要考虑实时性要求,即要求在有限的时间内生成一个可行的调度方案。这增加了问题的难度,需要在有限时间内找到一个较优的解。

柔性作业车间调度问题( FJSP) 的描述如下:n个工件 { J , J 2 , . . , J n } \{J,J_2,..,J_n\} {J,J2,..,Jn}要在 m m m 台机器 { M 1 , M 2 , . . , M m } \{M_1,M_2,..,M_m\} {M1,M2,..,Mm} 上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。因此,柔性作业车间调度问题包含两个子问题:确定各工件的加工机器 (机器选择子问题) 和确定各个机器上的加工先后顺序 (工序排序子问题)。

此外,在加工过程中还需要满足下面的约束条件:
(1) 同一台机器同一时刻只能加工一个工件;
(2) 同一工件的同一道工序在同一时刻只能被一台机器加工;
(3) 每个工件的每道工序一旦开始加工不能中断;
(4) 不同工件之间具有相同的优先级;
(5)不同工件的工序之间没有先后约束,同一工件的工序之间有先后约束;
(6)所有工件在零时刻都可以被加工。

1.1符号描述

n : n: n:工件总数;
m : m: m: 机器总数;
i , e : i,e: i,e: 机器序号, i , e = 1 , 2 , 3 , . . . , m i,e=1,2,3,...,m i,e=1,2,3,...,m ;
j , k : j,k: j,k: 工件序号, j , k = 1 , 2 , 3 , . . . , n ; j,k=1,2,3,...,n; j,k=1,2,3,...,n; h j : h_j: hj:工件 j j j 的工序总数;
h , l : h,l: h,l: 工序序号, h = 1 , 2 , 3 , . . . , h j h=1,2,3,...,h_j h=1,2,3,...,hj ;
Ω j h : \Omega_{jh}: Ωjh:工件 j j j 的第 h h h 道工序的可选加工机器集;
m j h : m_{jh}: mjh:工件 j j j 的第 h h h 道工序的可选加工机器数;
O j h : O_{jh}: Ojh:工件 j j j 的第 h h h道工序;
M i j h : M_{ijh}: Mijh:工件 j j j 的第 h h h道工序在机器 i i i 上加工;
p i j h : p_{ijh}: pijh:工件 j j j的第 h h h道工序在机器 i i i上的加工时间;
s j h : s_{jh}: sjh:工件 j j j 的第 h h h 道工序加工开始时间;
c j h : c_{jh}: cjh:工件 j j j的第 h h h道工序加工完成时间;
d j : d_j: dj:工件 j j j 的交货期;
L L L: 一个足够大的正数;
C j C_j Cj: 每个工件的完成时间;
C max ⁡ : C_{\max}: Cmax: 最大完工时间;
T o : T o = ∑ j = 1 n h j T_o:\quad T_o=\sum_{j=1}^nh_j To:To=j=1nhj, 所有工件工序总数;
x i j h = { 1 , 如果工序 O j h 选择机器 i ; 0 , 否则; x_{ijh}=\begin{cases}1,\text{如果工序}O_{jh}\text{选择机器}i;\\0,\text{否则;}\end{cases} xijh={1,如果工序Ojh选择机器i;0,否则;
y i j h k l = { 1 , 如果 O i j h 先于 O i k l 加工 ; 0 , 否则 ; y_{ijhkl}=\begin{cases}1,\text{如果}O_{ijh}\text{先于}O_{ikl}\text{加工};\\0,\text{否则};\end{cases} yijhkl={1,如果Oijh先于Oikl加工;0,否则;

1.2约束条件

C 1 : s j h + x i j h × p i j h ≤ c j h C_{1}:s_{jh}+x_{ijh}\times p_{ijh}\leq c_{jh} C1:sjh+xijh×pijhcjh

其中: i = 1 , … , m ; j = 1 , … , n ; i=1,\ldots,m;j=1,\ldots,n; i=1,,m;j=1,,n; h = 1 , … , h j h=1,\ldots,h_j h=1,,hj
C 2 : c j h ≤ s j ( h + 1 ) C_{2}:c_{jh}\leq s_{j(h+1)} C2:cjhsj(h+1)
其中 : j = 1 , … , n ; h = 1 , . . . , h j − 1 :j=1,\ldots,n;h=1,...,h_j-1 :j=1,,n;h=1,...,hj1
C 3 : c j h j ≤ C max ⁡ C_{3}:c_{jh_j}\leq C_{\max} C3:cjhjCmax
其中: j = 1 , . . . , n j=1,...,n j=1,...,n
C 4 : s j h + p i j h ≤ s k l + L ( 1 − y i j h k l ) C_{4}:s_{jh}+p_{ijh}\leq s_{kl}+L(1-y_{ijhkl}) C4:sjh+pijhskl+L(1yijhkl)

其中 : j = 0 , … , n ; k = 1 , … , n ; h = 1 , … , h j ; l = 1 , … , h k ; i = 1 , … , m :j=0,\ldots,n;k=1,\ldots,n;h=1,\ldots,h_j;l=1,\ldots,h_k;i=1,\ldots,m :j=0,,n;k=1,,n;h=1,,hj;l=1,,hk;i=1,,m
C 5 : c j h ≤ s j ( h + 1 ) + L ( 1 − y i k l j ( h + 1 ) ) C_{5}:c_{jh}\leq s_{j(h+1)}+L(1-y_{iklj(h+1)}) C5:cjhsj(h+1)+L(1yiklj(h+1))

其中 : j = 1 , … , n ; k = 0 , … , n ; h = 1 , … , h j − 1 ; l = 1 , … , h k ; i = 1 , … , m :j=1,\ldots,n;k=0,\ldots,n;h=1,\ldots,h_j-1;\quad l=1,\ldots,h_k;\quad i=1,\ldots,m :j=1,,n;k=0,,n;h=1,,hj1;l=1,,hk;i=1,,m
h 1 : ∑ i = 1 m j h x i j h = 1 h_{1}:\sum_{i=1}^{m_{jh}}x_{ijh}=1 h1:i=1mjhxijh=1
其中: h = 1 , . . . , h j ; j = 1 , . . . , n ; h=1,...,h_j;j=1,...,n; h=1,...,hj;j=1,...,n;

h 2 : ∑ j = 1 n ∑ h = 1 h j y i j h k l = x i k l h_{2}:\sum_{j=1}^n\sum_{h=1}^{h_j}y_{ijhkl}=x_{ikl} h2:j=1nh=1hjyijhkl=xikl

其中: i = 1 , … , m ; k = 1 , … , n ; l = 1 , … , h k i=1,\ldots,m;k=1,\ldots,n;l=1,\ldots,h_k i=1,,m;k=1,,n;l=1,,hk
h 3 : ∑ i = 1 n ∑ i = 1 n k y i j h k l = x i j h h_{3}:\sum_{i=1}^n\sum_{i=1}^{n_k}y_{ijhkl}=x_{ijh} h3:i=1ni=1nkyijhkl=xijh

其中: i = 1 , … , m ; j = 1 , … , n ; h = 1 , … , h k i=1,\ldots,m;j=1,\ldots,n;\quad h=1,\ldots,h_k i=1,,m;j=1,,n;h=1,,hk
C 6 : s j h ≥ 0 , c j h ≥ 0 C_{6}:s_{jh}\geq0,c_{jh}\geq0 C6:sjh0,cjh0

其中 : j = 0 , 1 , . . . , n ; h = 1 , . . . , h j :j=0,1,...,n;h=1,...,h_j :j=0,1,...,n;h=1,...,hj

C 1 C_{1} C1 C 2 C_{2} C2表示每一个工件的工序先后顺序约束 ;
C 3 C_{3} C3表示工件的完工时间的约束,即每一个工件的完工时间不可能超过总的完工时间 ;
C 4 C_{4} C4 C 5 C_{5} C5表示同一时刻同一台机器只能加工一道工序 ;
h 1 h_{1} h1表示机器约束,即同一时刻同一道工序只能且仅能被一台机器加工;
h 2 h_{2} h2 h 3 h_{3} h3表示存在每一台机器上可以存在循环操作 ;
C 6 C_{6} C6表示各个参数变量必须是正数。

1.3目标函数

FJSP的目标函数是最大完工时间最小。完工时间是每个工件最后一道工序完成的时间,其中最大的那个时间就是最大完工时间(makespan)。它是衡量调度方案的最根本指标, 主要体现车间的生产效率,如下式所示:

f = min ⁡ ( max ⁡ l ≤ j ≤ n ( C j ) ) f=\min(\max_{\mathrm{l\leq}j\leq n}(C_j)) f=min(maxljn(Cj))

参考文献:
[1]张国辉.柔性作业车间调度方法研究[D].华中科技大学,2009.

二、算法简介

美洲狮优化算法(Puma Optimizar Algorithm ,POA)由Benyamin Abdollahzadeh等人于2024年提出,其灵感来自美洲狮的智慧和生活。在该算法中,在探索和开发的每个阶段都提出了独特而强大的机制,这提高了算法对各种优化问题的性能。此外,该算法还提出了一种新型的智能机制,即相变的超启发式机制(PI),使用这种机制,PO算法可以在优化操作期间执行相变操作,并平衡探索和开发,同时探索和开发都会根据问题的性质自动调整。

参考文献:

[1]Abdollahzadeh, B., Khodadadi, N., Barshandeh, S. et al. Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Comput (2024). Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning | Cluster Computing
原文链接:https://blog.csdn.net/2401_82411023/article/details/136609644

三、算法求解FJSP

3.1部分代码

dim=2*sum(operaNumVec);
LB = -jobNum * ones(1, dim);
UB = jobNum * ones(1, dim);
Max_iteration = 100;
SearchAgents_no = 100;
fobj=@(x)fitness(x, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);

%% 优化算法求解FJSP
[fMin , bestX, Convergence_curve ] = POA(SearchAgents_no,Max_iteration,LB,UB,dim,fobj);
machineTable=GetMachineTable(bestX, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);

%% 画收敛曲线图
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('迭代次数')
ylabel('最大完工时间')
legend('POA')
saveas(gca,'1.jpg');

3.2部分结果

在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/525231.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LangChain-12 Routing By Semantic Similarity 让GPT根据不明确的问题 自动选择工具集 根据语义自动路由

问题背景 平常我们设计程序的时候,会这么写: // 随便举例 String type paramDTO.getType(); if (type.equals("吃饭")) {// do } else if (type.equals("喝水")) {// do } else {// do }此时如果type传入的不是数字,那…

C++:MySQL的事务概念与使用(四)

1、事务的概念 定义:事务是构成单一逻辑工作单元的操作集合,要么完整的执行,要么完全不执行。无论发生何种情况,DBS必须保证事务能正确、完整的执行。 性质:事务的四大ACID性质。 原子性(Atomicity):一个事…

基于SpringBoot的“汽车租赁系统”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“汽车租赁系统”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 管理员登录界面图 管理员功能界面…

AWE2024酷开科技智能家居,让生活从此更智能!

随着科技的飞速发展,智能家居已经成为了人们生活中不可或缺的一部分。在这个领域里,酷开科技品类逐渐丰富,在AWE2024展会上展现出耀眼光芒,将全品类智能家电新品集结亮相!让人们的生活更加便捷、舒适和智能化。 酷开K…

MUX VLAN

目录 原理概述 实验目的 实验内容 实验拓扑 1.基本配置 2.使用Hybrid端口实现网络需求 3.使用Mux VLAN实现网络需求 原理概述 在实际的企业网络环境中,往往需要所有的终端用户都能够访问某些特定的服务器,而用户之间的访问控制规则则比较复杂。在…

基于Spring Boot+Vue的在线拍卖系统

随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单管理、…

dockerhub右键快速搜索脚本

Chrome 浏览器扩展的后台脚本,用于创建右键菜单项,并根据用户的操作在新的标签页中打开 Docker Hub 网站或者进行搜索。 // 创建右键菜单项,用于打开 Docker Hub 网站 chrome.contextMenus.create({id: search-home, // 菜单项的唯一标识符t…

BMP280芯片I2C驱动开发指南

这颗芯片不太容易焊接,不能长时间风枪吹,否则容易掉壳。 第一部分 硬件连接 电路很简单,没什么需要注意的。 第二部分 软件驱动 本来打算使用SPL06的,结果焊接掉壳了,更换成bmp280了。函数名没有变过来。。。 void …

node相关

文章目录 nodeJS是什么?优缺点使用场景全局对象适合用于构建 I/O 密集型不适用于计算密集型任务 nodeJS是什么? Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时环境,它是跨平台和开源的。 Node.js 使用高效、轻量级的事件驱动、非阻…

免费SSL通配符证书/SSL泛域名证书获取教程

我们先基本了解什么是SSL证书以及其作用。SSL证书是一种数字证书,它通过为网站提供身份验证和数据加密服务,从而保护网站的用户信息安全。当我们在浏览器的地址栏看到“https”和绿色锁标志时,就表示该网站使用了SSL证书。 那么什么又是通配…

ES入门十四:分词器

我们存储到ES中数据大致分为以下两种: 全文本,例如文章内容、通知内容精确值,如实体Id 在对这两类值进行查询的时候,精确值类型会比较它们的二进制,其结果只有相等或者不想等。而对全文本类型进行等值比较是不太实现…

适用于 Windows 10 的 10 大免费数据恢复软件

数据丢失可能是一场噩梦,尤其是在涉及重要文件和文档时。无论是由于意外删除、系统崩溃还是病毒攻击,找到适合 Windows 10 的文件夹恢复软件都可以在恢复丢失的数据方面发挥重要作用。在本指南中,我们将探索适用于 Windows 10 用户的 10 大免…

【数字IC/FPGA】什么是无符号数?什么是有符号数?

进制 虽然在日常生活中,我们已经习惯了使用10进制数字,但在由数字电路构成的数字世界中,2进制才是效率更高的选择。 10进制与2进制 10进制(decimal)计数法(一般也叫阿拉伯计数法)是在日常生活…

优优嗨聚集团:个人债务,危险的边缘舞者

在现代社会,个人债务已成为一个不容忽视的现象。随着消费水平的提高和信贷市场的繁荣,越来越多的人选择通过借贷来满足生活或投资的需求。然而,个人债务如同一把双刃剑,既能助力我们实现梦想,也可能让我们陷入困境。那…

SiteServer 学习笔记 Day06 添加栏目名称

1、在关于我们栏目中添加ISO认证和系统、质量声明、以客户为中心。 2、在市场服务栏目中添加电信和网络、医疗系统、清洁技术、计算和存储。 3、在制造服务拉姆中添加PCB组装、塑料成型服务、机器制造。 4、在测试服务栏目中添加测试开发、功能测试。 5、在工程服务栏目中添…

PTA(题目集二 题目 代码 C++)

目录 题目一: 代码: 题目二: 代码: 题目三: 代码: 题目四: 代码: 题目五: 代码: 题目六: 代码: 题目七: 代…

《从零开始学架构》读书笔记(一)

目录 软件架构设计产生的历史背景 软件架构设计的目的 系统复杂度来源 追求高性能 一、单机高性能 二、集群的高性能 追求高可用 一、计算高可用 二、存储高可用 追求可扩展性 一、预测变化 二、应对变化 追求安全、低成本、规模 一、安全 二、低成本 三、规模…

使用 Python 的 LSTM 进行股市预测

目录 一、说明 二、为什么需要时间序列模型? 三、下载数据 3.1 从 Alphavantage 获取数据 3.1 从 Kaggle 获取数据 3.3 数据探索 3.4 数据可视化 四、将数据拆分为训练集和测试集 五、数据标准化 六、通过平均进行一步预测 6.1 标准平均值 6.2 指数移动平均线 6.3 如…

C++类与对象中(个人笔记)

类与对象中 类的6个默认成员函数1.构造函数1.1特性 2.析构函数2.1特性 3.拷贝构造函数3.1特性 4.赋值运算符重载4.1特性 5.日期类的实现6.const成员6.1const成员的几个问题 7.取地址及const取地址操作符重载 类的6个默认成员函数 如果一个类中什么成员都没有,简称为…

iOS 17.5系统或可识别并禁用未知跟踪器,苹果Find My技术应用越来越合理

苹果公司去年与谷歌合作,宣布将制定新的行业标准来解决人们日益关注的跟踪器隐私问题。苹果计划在即将发布的 iOS 17.5 系统中加入这项提升用户隐私保护的新功能。 科技网站 9to5Mac 在苹果发布的 iOS 17.5 开发者测试版内部代码中发现了这项反跟踪功能的蛛丝马迹…