大创项目推荐 深度学习 大数据 股票预测系统 - python lstm

文章目录

  • 0 前言
  • 1 课题意义
    • 1.1 股票预测主流方法
  • 2 什么是LSTM
    • 2.1 循环神经网络
    • 2.1 LSTM诞生
  • 2 如何用LSTM做股票预测
    • 2.1 算法构建流程
    • 2.2 部分代码
  • 3 实现效果
    • 3.1 数据
    • 3.2 预测结果
        • 项目运行展示
        • 开发环境
        • 数据获取
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 大数据 股票预测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题意义

利用神经网络模型如果能够提高对股票价格的预测精度,更好地掌握股票价格发展趋势,这对于投资者来说可以及时制定相应的发展策略,更好地应对未来发生的不确定性事件,对于个人来说可以降低投资风险,减少财产损失,实现高效投资,具有一定的实践价值。

1.1 股票预测主流方法

股票市场复杂、非线性的特点使我们难以捉摸其变化规律,目前有很多预测股票走势的论文和算法。

定量分析从精确的数据资料中获得股票发展的价值规律,通过建立模型利用数学语言对股市的发展情况做出解释与预测。

目前常用的定量分析方法有:

  • 传统时间序列预测模型
  • 马尔可夫链预测
  • 灰色系统理论预测
  • 遗传算法
  • 机器学习预测等方法

2 什么是LSTM

LSTM是长短期记忆网络(LSTM,Long Short-Term Memory),想要理解什么是LSTM,首先要了解什么是循环神经网络。

2.1 循环神经网络

对于传统的BP神经网络如深度前馈网络、卷积神经网络来说,同层及跨层之间的神经元是独立的,但实际应用中对于一些有上下联系的序列来说,如果能够学习到它们之间的相互关系,使网络能够对不同时刻的输入序列产生一定的联系,像生物的大脑一样有“记忆功能”,这样的话我们的模型也就会有更低的训练出错频率及更好的泛化能力。

JordanMI提出序列理论,描述了一种体现“并行分布式处理”的网络动态系统,适用于语音生成中的协同发音问题,并进行了相关仿真实验,ElmanJL认为连接主义模型中对时间如何表示是至关重要的,1990年他提出使用循环连接为网络提供动态内存,从相对简单的异或问题到探寻单词的语义特征,网络均学习到了有趣的内部表示,网络还将任务需求和内存需求结合在一起,由此形成了简单循环网络的基础框架。

循环神经网络(RNN)之间的神经元是相互连接的,不仅在层与层之间的神经元建立连接,而且每一层之间的神经元也建立了连接,隐藏层神经元的输入由当前输入和上一时刻隐藏层神经元的输出共同决定,每一时刻的隐藏层神经元记住了上一时刻隐藏层神经元的输出,相当于对网络增添了“记忆”功能。我们都知道在输入序列中不可避免会出现重复或相似的某些序列信息,我们希望RNN能够保留这些记忆信息便于再次调用,且RNN结构中不同时刻参数是共享的,这一优点便于网络在不同位置依旧能将该重复信息识别出来,这样一来模型的泛化能力自然有所上升。

RNN结构如下:

在这里插入图片描述

2.1 LSTM诞生

RNN在解决长序列问题时未能有良好的建模效果,存在长期依赖的弊端,对此HochreiterS等人对神经单元做出了改进,引入自循环使梯度信息得以长时间持续流动,即模型可以拥有长期记忆信息,且自循环权重可以根据前后信息进行调整并不是固定的。作为RNN的一种特殊结构,它可以根据前后输入情况决定历史信息的去留,增进的门控机制可以动态改变累积的时间尺度进而控制神经单元的信息流,这样神经网络便能够自己根据情况决定清除或保留旧的信息,不至于状态信息过长造成网络崩溃,这便是长短期记忆(LSTM)网络。随着信息不断流入,该模型每个神经元内部的遗忘门、输入门、输出门三个门控机制会对每一时刻的信息做出判断并及时进行调整更新,LSTM模型现已广泛应用于无约束手写识别、语音识别、机器翻译等领域。

在这里插入图片描述

2 如何用LSTM做股票预测

2.1 算法构建流程

在这里插入图片描述

2.2 部分代码



    import numpy as np
    import matplotlib.pyplot as plt
    import tensorflow as tf
    import pandas as pd
    import math
    
    def LSTMtest(data):
    
        n1 = len(data[0]) - 1 #因为最后一位为label
        n2 = len(data)
        print(n1, n2)
    
        # 设置常量
        input_size = n1  # 输入神经元个数
        rnn_unit = 10    # LSTM单元(一层神经网络)中的中神经元的个数
        lstm_layers = 7  # LSTM单元个数
        output_size = 1  # 输出神经元个数(预测值)
        lr = 0.0006      # 学习率
    
        train_end_index = math.floor(n2*0.9)  # 向下取整
        print('train_end_index', train_end_index)
        # 前90%数据作为训练集,后10%作为测试集
        # 获取训练集
        # time_step 时间步,batch_size 每一批次训练多少个样例
        def get_train_data(batch_size=60, time_step=20, train_begin=0, train_end=train_end_index):
            batch_index = []
            data_train = data[train_begin:train_end]
            normalized_train_data = (data_train - np.mean(data_train, axis=0)) / np.std(data_train, axis=0)  # 标准化
            train_x, train_y = [], []  # 训练集
            for i in range(len(normalized_train_data) - time_step):
                if i % batch_size == 0:
                    # 开始位置
                    batch_index.append(i)
                    # 一次取time_step行数据
                # x存储输入维度(不包括label) :X(最后一个不取)
                # 标准化(归一化)
                x = normalized_train_data[i:i + time_step, :n1]
                # y存储label
                y = normalized_train_data[i:i + time_step, n1, np.newaxis]
                # np.newaxis分别是在行或列上增加维度
                train_x.append(x.tolist())
                train_y.append(y.tolist())
            # 结束位置
            batch_index.append((len(normalized_train_data) - time_step))
            print('batch_index', batch_index)
            # print('train_x', train_x)
            # print('train_y', train_y)
            return batch_index, train_x, train_y
    
        # 获取测试集
        def get_test_data(time_step=20, test_begin=train_end_index+1):
            data_test = data[test_begin:]
            mean = np.mean(data_test, axis=0)
            std = np.std(data_test, axis=0)  # 矩阵标准差
            # 标准化(归一化)
            normalized_test_data = (data_test - np.mean(data_test, axis=0)) / np.std(data_test, axis=0)
            # " // "表示整数除法。有size个sample
            test_size = (len(normalized_test_data) + time_step - 1) // time_step
            print('test_size$$$$$$$$$$$$$$', test_size)
            test_x, test_y = [], []
            for i in range(test_size - 1):
                x = normalized_test_data[i * time_step:(i + 1) * time_step, :n1]
                y = normalized_test_data[i * time_step:(i + 1) * time_step, n1]
                test_x.append(x.tolist())
                test_y.extend(y)
            test_x.append((normalized_test_data[(i + 1) * time_step:, :n1]).tolist())
            test_y.extend((normalized_test_data[(i + 1) * time_step:, n1]).tolist())
            return mean, std, test_x, test_y
    
        # ——————————————————定义神经网络变量——————————————————
        # 输入层、输出层权重、偏置、dropout参数
        # 随机产生 w,b
        weights = {
            'in': tf.Variable(tf.random_normal([input_size, rnn_unit])),
            'out': tf.Variable(tf.random_normal([rnn_unit, 1]))
        }
        biases = {
            'in': tf.Variable(tf.constant(0.1, shape=[rnn_unit, ])),
            'out': tf.Variable(tf.constant(0.1, shape=[1, ]))
        }
        keep_prob = tf.placeholder(tf.float32, name='keep_prob')  # dropout 防止过拟合
    
        # ——————————————————定义神经网络——————————————————
        def lstmCell():
            # basicLstm单元
            # tf.nn.rnn_cell.BasicLSTMCell(self, num_units, forget_bias=1.0,
            # tate_is_tuple=True, activation=None, reuse=None, name=None) 
            # num_units:int类型,LSTM单元(一层神经网络)中的中神经元的个数,和前馈神经网络中隐含层神经元个数意思相同
            # forget_bias:float类型,偏置增加了忘记门。从CudnnLSTM训练的检查点(checkpoin)恢复时,必须手动设置为0.0。
            # state_is_tuple:如果为True,则接受和返回的状态是c_state和m_state的2-tuple;如果为False,则他们沿着列轴连接。后一种即将被弃用。
            # (LSTM会保留两个state,也就是主线的state(c_state),和分线的state(m_state),会包含在元组(tuple)里边
            # state_is_tuple=True就是判定生成的是否为一个元组)
            #   初始化的 c 和 a 都是zero_state 也就是都为list[]的zero,这是参数state_is_tuple的情况下
            #   初始state,全部为0,慢慢的累加记忆
            # activation:内部状态的激活函数。默认为tanh
            # reuse:布尔类型,描述是否在现有范围中重用变量。如果不为True,并且现有范围已经具有给定变量,则会引发错误。
            # name:String类型,层的名称。具有相同名称的层将共享权重,但为了避免错误,在这种情况下需要reuse=True.
            #
    
            basicLstm = tf.nn.rnn_cell.BasicLSTMCell(rnn_unit, forget_bias=1.0, state_is_tuple=True)
            # dropout 未使用
            drop = tf.nn.rnn_cell.DropoutWrapper(basicLstm, output_keep_prob=keep_prob)
            return basicLstm


        def lstm(X):  # 参数:输入网络批次数目
            batch_size = tf.shape(X)[0]
            time_step = tf.shape(X)[1]
            w_in = weights['in']
            b_in = biases['in']
    
            # 忘记门(输入门)
            # 因为要进行矩阵乘法,所以reshape
            # 需要将tensor转成2维进行计算
            input = tf.reshape(X, [-1, input_size])
            input_rnn = tf.matmul(input, w_in) + b_in
            # 将tensor转成3维,计算后的结果作为忘记门的输入
            input_rnn = tf.reshape(input_rnn, [-1, time_step, rnn_unit])
            print('input_rnn', input_rnn)
            # 更新门
            # 构建多层的lstm
            cell = tf.nn.rnn_cell.MultiRNNCell([lstmCell() for i in range(lstm_layers)])
            init_state = cell.zero_state(batch_size, dtype=tf.float32)
    
            # 输出门
            w_out = weights['out']
            b_out = biases['out']
            # output_rnn是最后一层每个step的输出,final_states是每一层的最后那个step的输出
            output_rnn, final_states = tf.nn.dynamic_rnn(cell, input_rnn, initial_state=init_state, dtype=tf.float32)
            output = tf.reshape(output_rnn, [-1, rnn_unit])
            # 输出值,同时作为下一层输入门的输入
            pred = tf.matmul(output, w_out) + b_out
            return pred, final_states
    
        # ————————————————训练模型————————————————————
    
        def train_lstm(batch_size=60, time_step=20, train_begin=0, train_end=train_end_index):
            # 于是就有了tf.placeholder,
            # 我们每次可以将 一个minibatch传入到x = tf.placeholder(tf.float32,[None,32])上,
            # 下一次传入的x都替换掉上一次传入的x,
            # 这样就对于所有传入的minibatch x就只会产生一个op,
            # 不会产生其他多余的op,进而减少了graph的开销。
    
            X = tf.placeholder(tf.float32, shape=[None, time_step, input_size])
            Y = tf.placeholder(tf.float32, shape=[None, time_step, output_size])
            batch_index, train_x, train_y = get_train_data(batch_size, time_step, train_begin, train_end)
            # 用tf.variable_scope来定义重复利用,LSTM会经常用到
            with tf.variable_scope("sec_lstm"):
                pred, state_ = lstm(X) # pred输出值,state_是每一层的最后那个step的输出
            print('pred,state_', pred, state_)
    
            # 损失函数
            # [-1]——列表从后往前数第一列,即pred为预测值,Y为真实值(Label)
            #tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值
            loss = tf.reduce_mean(tf.square(tf.reshape(pred, [-1]) - tf.reshape(Y, [-1])))
            # 误差loss反向传播——均方误差损失
            # 本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。
            # Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳.
            train_op = tf.train.AdamOptimizer(lr).minimize(loss)
            saver = tf.train.Saver(tf.global_variables(), max_to_keep=15)
    
            with tf.Session() as sess:
                # 初始化
                sess.run(tf.global_variables_initializer())
                theloss = []
                # 迭代次数
                for i in range(200):
                    for step in range(len(batch_index) - 1):
                        # sess.run(b, feed_dict = replace_dict)
                        state_, loss_ = sess.run([train_op, loss],
                                            feed_dict={X: train_x[batch_index[step]:batch_index[step + 1]],
                                                       Y: train_y[batch_index[step]:batch_index[step + 1]],
                                                       keep_prob: 0.5})
                                            #  使用feed_dict完成矩阵乘法 处理多输入
                                            #  feed_dict的作用是给使用placeholder创建出来的tensor赋值

                                            #  [batch_index[step]: batch_index[step + 1]]这个区间的X与Y
                                            #  keep_prob的意思是:留下的神经元的概率,如果keep_prob为0的话, 就是让所有的神经元都失活。
                    print("Number of iterations:", i, " loss:", loss_)
                    theloss.append(loss_)
                print("model_save: ", saver.save(sess, 'model_save2\\modle.ckpt'))
                print("The train has finished")
            return theloss
    
        theloss = train_lstm()


                # 相对误差=(测量值-计算值)/计算值×100%
                test_y = np.array(test_y) * std[n1] + mean[n1]
                test_predict = np.array(test_predict) * std[n1] + mean[n1]
                acc = np.average(np.abs(test_predict - test_y[:len(test_predict)]) / test_y[:len(test_predict)])
                print("预测的相对误差:", acc)
    
                print(theloss)
                plt.figure()
                plt.plot(list(range(len(theloss))), theloss, color='b', )
                plt.xlabel('times', fontsize=14)
                plt.ylabel('loss valuet', fontsize=14)
                plt.title('loss-----blue', fontsize=10)
                plt.show()
                # 以折线图表示预测结果
                plt.figure()
                plt.plot(list(range(len(test_predict))), test_predict, color='b', )
                plt.plot(list(range(len(test_y))), test_y, color='r')
                plt.xlabel('time value/day', fontsize=14)
                plt.ylabel('close value/point', fontsize=14)
                plt.title('predict-----blue,real-----red', fontsize=10)
                plt.show()


        prediction()



需要完整代码工程的同学,请联系学长获取

3 实现效果

3.1 数据

采集股票数据
在这里插入图片描述
任选几支股票作为研究对象。

3.2 预测结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

项目运行展示

废话不多说, 先展示项目运行结果, 后面才进行技术讲解

对某公司的股票进行分析和预测 :
在这里插入图片描述

开发环境

如果只运行web项目,则只需安装如下包:

  • python 3.6.x

  • django >= 2.1.4 (或者使用conda安装最新版)

  • pandas >= 0.23.4 (或者使用conda安装最新版)

  • numpy >= 1.15.2 (或者使用conda安装最新版)
    *apscheduler = 2.1.2 (请用pip install apscheduler==2.1.2 安装,conda装的版本不兼容)
    如果需要训练模型或者使用模型来预测(注:需要保证本机拥有 NVIDIA GPU以及显卡驱动),则还需要安装:

  • tensorflow-gpu >= 1.10.0 (可以使用conda安装最新版。如用conda安装,cudatoolkit和cudnn会被自动安装)

  • cudatoolkit >= 9.0 (根据自己本机的显卡型号决定,请去NVIDIA官网查看)

  • cudnn >= 7.1.4 (版本与cudatoolkit9.0对应的,其他版本请去NVIDIA官网查看对应的cudatoolkit版本)

  • keras >= 2.2.2 (可以使用conda安装最新版)

  • matplotlib >= 2.2.2 (可以使用conda安装最新版)

数据获取

训练模型的数据,即10个公司的历史股票数据。获取国内上市公司历史股票数据,
并以csv格式保存下来。csv格式方便用pandas读取,输入到LSTM神经网络模型, 用于训练模型以及预测股票数据。

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/522581.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【前端】CSS(引入方式+选择器+常用元素属性+盒模型+弹性布局)

文章目录 CSS一、什么是CSS二、语法规范三、引入方式1.内部样式表2.行内样式表3.外部样式 四、选择器1.选择器的种类1.基础选择器:单个选择器构成的1.标签选择器2.类选择器3.id 选择器4.通配符选择器 2.复合选择器1.后代选择器2.子选择器3.并集选择器4.伪类选择器 五…

一文教你配置 Tomcat 9.0.19 + Java 12.0.2,并启用 SSL——以 Windows Server 2019 平台为例

Tomcat 的运行依赖 JAVA 环境!安装的时候会让你选择 JDK 所在路径。 Linux 下的安装教程已更新: 操作系统:Windows Server 2019 Datacenter JAVA 版本:12.0.2 Tomcat 版本:9.0.19 GeoServer 版本:2.23.2 …

【机器学习入门】使用YOLO模型进行物体检测

系列文章目录 第1章 专家系统 第2章 决策树 第3章 神经元和感知机 识别手写数字——感知机 第4章 线性回归 第5章 逻辑斯蒂回归和分类 第5章 支持向量机 第6章 人工神经网络(一) 第6章 人工神经网络(二) 卷积和池化 第6章 使用pytorch进行手写数字识别 文章目录 系列文章目录前…

LeetCode-51. N 皇后【数组 回溯】

LeetCode-51. N 皇后【数组 回溯】 题目描述:解题思路一:回溯, 回溯三部曲。验证是否合法只需要检查:1.正上方;2. 左上方;3.右上方。因为是从上到下,从左到右遍历的,下方不可能有皇后。解题思路…

计算机网络基础(一)

目录 一.互联网和因特网 二.因特网的发展历程 三.因特网的功能 3.1边缘部分 3.1.1:客户服务器方式(C/S方式) 3.1.2:对等方式 3.2.核心部分 3.2.1:电路交换 3.2.2.报文交换 3.2.3:分组交换 四.计…

Python | Leetcode Python题解之第11题盛最多水的容器

题目&#xff1a; 题解&#xff1a; class Solution:def maxArea(self, height: List[int]) -> int:l, r 0, len(height) - 1ans 0while l < r:area min(height[l], height[r]) * (r - l)ans max(ans, area)if height[l] < height[r]:l 1else:r - 1return ans

基于Python的自然语言的话题文本分类(V2.0),附源码

博主介绍&#xff1a;✌IT徐师兄、7年大厂程序员经历。全网粉丝15W、csdn博客专家、掘金/华为云//InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3…

Java 哈希表

一、哈希表的由来 我们的java程序通过访问数据库来获取数据&#xff0c;但是当我们对数据库所查询的信息进行大量分析后得知&#xff0c;我们要查询的数据满足二八定律&#xff0c;一般数据库的数据基本存储在磁盘当中。这使得每次查询数据将变得无比缓慢。为此我们可以将经常…

逆向案例十二——看准网企业信息json格式的信息

网址&#xff1a;【全国公司排行|排名榜单|哪家好】-看准网 打开开发者工具——刷新——网络——XHR——下滑页面加载新的页面——找到数据包 发现参数加密&#xff0c;返回的数据也进行了加密 按关键字在下方搜索 kiv进入第一个js文件 ctrlf打开文件里面的搜索框继续搜kiv找到…

多模态系列-综述Video Understanding with Large Language Models: A Survey

本文是LLM系列文章,针对《Video Understanding with Large Language Models: A Survey》的翻译。 论文链接:https://arxiv.org/pdf/2312.17432v2.pdf 代码链接:https://github.com/yunlong10/Awesome-LLMs-for-Video-Understanding 大型语言模型下的视频理解研究综述 摘要…

替换空格(替换特定字符)

&#x1f600;前言 在字符串处理中&#xff0c;经常会遇到需要替换特定字符的情况。本文将介绍一道经典的字符串替换问题&#xff1a;将字符串中的空格替换成 “%20”。我们将探讨一种高效的解决方法&#xff0c;通过倒序遍历字符串来实现原地替换&#xff0c;避免额外空间的开…

吴恩达:AI 智能体工作流

热门文章推荐&#xff1a; &#xff08;1&#xff09;《为什么很多人工作 3 年 却只有 1 年经验&#xff1f;》&#xff08;2&#xff09;《一文掌握大模型提示词技巧&#xff1a;从战略到战术巧》&#xff08;3&#xff09;《AI 时代&#xff0c;程序员的出路在何方&#xff1…

Python+Yolov8框选位置目标识别人数统计计数

程序示例精选 PythonYolov8框选位置目标识别人数统计计数 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对《PythonYolov8框选位置目标识别人数统计计数》编写代码&#xff0c;代码整洁&#…

深度探索Sketch:功能、历程、替代软件及技巧一览

Sketch 它是一个适合所有设计师的矢量绘图应用程序。矢量绘图也是设计网页、图标和界面的最佳方式。但除了矢量编辑的功能外&#xff0c;我们还增加了一些基本的位图工具&#xff0c;如模糊和颜色校正。 为什么选择Sketch Sketch 它是为图标设计和界面设计而生的。它是一个优…

职场新变革:AI赋能ICT劳动力联盟的行动与展望

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

【活动创作】未来AI技术方面会有哪些创业机会

放假期间突然看到这个活动创作&#xff0c;觉得很有意思&#xff0c;既然如此&#xff0c;我就先让AI来回答一下吧&#xff0c;哈哈 1、文心一言 首先来看看文心一言的回答&#xff1a; 2、讯飞星火 然后来看看讯飞星火的回答&#xff1a; 3、个人感受 最后来说说给人感受吧&am…

美国CPC认证是什么?为什么必须办理CPC认证呢?

美国CPC认证&#xff0c;全称为Childrens Product Certificate&#xff0c;是儿童产品认证的意思。它主要针对的是在美国市场销售的儿童产品&#xff0c;如玩具、家具、童车、餐椅、床上用品等。CPC认证要求产品安全性高&#xff0c;符合美国加州65、16 CFR等法规要求&#xff…

【Linux】达梦数据库安装部署(附详细图文)

目录 一、安装前的准备工作 1.检查操作系统配置 &#xff08;1&#xff09;获取系统位数 getconf LONG_BIT &#xff08;2&#xff09;查看操作系统release信息 cat /etc/system-release &#xff08;3&#xff09;查询系统名称 uname -a &#xff08;4&#xff09;查看操…

Filter

文章目录 Filter快速入门url-pattern生命周期FilterConfigFilterChain 过滤器链执行顺序 Filter Filter 过滤器它是 JavaWeb 的三大组件之一(Servlet 程序、Listener 监听器、Filter 过滤器)。 Filter 过滤器它的作用是&#xff1a;拦截请求&#xff0c;过滤响应。 快速入门 创…

撸代码时,有哪些习惯一定要坚持?

我从2011年开始做单片机开发&#xff0c;一直保持以下撸代码的习惯。 1.做好代码版本管理 有些人&#xff0c;喜欢一个程序干到底&#xff0c;直到实现全部的产品功能&#xff0c;我以前做51单片机的项目就是这样。 如果功能比较多的产品&#xff0c;我不建议这样做&#xff0…