记一次 .NET某管理局检测系统 内存暴涨分析

一:背景

1. 讲故事

前些天有位朋友微信找到我,说他们的WPF程序有内存泄漏的情况,让我帮忙看下怎么回事?并且dump也抓到了,网上关于程序内存泄漏,内存暴涨的文章不计其数,看样子这个dump不是很好分析,不管怎么说,上 windbg 说话。

二:WinDbg分析

1. 内存真的暴涨吗

.NET调试训练营中我一直强调要相信数据,不要相信别人的一面之词,往往会把你带到沟里去,接下来使用 !address -summary 观察下提交内存。


0:000> !address -summary

--- Usage Summary ---------------- RgnCount ----------- Total Size -------- %ofBusy %ofTotal
Free                                    586     7dfd`f04e3000 ( 125.992 TB)           98.43%
<unknown>                              1390      201`5a9bc000 (   2.005 TB)  99.86%    1.57%
Heap                                   3989        0`7695c000 (   1.853 GB)   0.09%    0.00%
Image                                  1744        0`2077d000 ( 519.488 MB)   0.02%    0.00%
Stack                                   957        0`1dc00000 ( 476.000 MB)   0.02%    0.00%
TEB                                     319        0`0027e000 (   2.492 MB)   0.00%    0.00%
Other                                    61        0`001f9000 (   1.973 MB)   0.00%    0.00%
PEB                                       1        0`00001000 (   4.000 kB)   0.00%    0.00%
...
--- State Summary ---------------- RgnCount ----------- Total Size -------- %ofBusy %ofTotal
MEM_FREE                                586     7dfd`f04e3000 ( 125.992 TB)           98.43%
MEM_RESERVE                            2028      201`46def000 (   2.005 TB)  99.85%    1.57%
MEM_COMMIT                             6433        0`c8d1e000 (   3.138 GB)   0.15%    0.00%
...

从卦中可知当前的提交内存是 3.1G,对于一个窗体程序来说这个内存量算是比较大了,接下来使用 !eeheap -gc 观察下托管堆内存。


0:000> !eeheap -gc

========================================
Number of GC Heaps: 1
----------------------------------------
generation 0 starts at 1b368e4de10
generation 1 starts at 1b3687ea4f0
generation 2 starts at 1b300001000
ephemeral segment allocation context: none
Small object heap
         segment            begin        allocated        committed allocated size         committed size        
    01b300000000     01b300001000     01b30fffff88     01b310000000 0xfffef88 (268431240)  0x10000000 (268435456)
    01b35dc70000     01b35dc71000     01b368e8fe28     01b369995000 0xb21ee28 (186773032)  0xbd25000 (198332416) 
Large object heap starts at 1b310001000
         segment            begin        allocated        committed allocated size         committed size        
    01b310000000     01b310001000     01b316d40560     01b316d41000 0x6d3f560 (114554208)  0x6d41000 (114561024) 
    01b3cfc50000     01b3cfc51000     01b3d6588320     01b3d6589000 0x6937320 (110326560)  0x6939000 (110333952) 
Pinned object heap starts at 1b318001000
         segment            begin        allocated        committed allocated size         committed size        
    01b318000000     01b318001000     01b3180812d0     01b318082000 0x802d0 (525008)       0x82000 (532480)      
------------------------------
GC Allocated Heap Size:    Size: 0x28914900 (680610048) bytes.
GC Committed Heap Size:    Size: 0x29421000 (692195328) bytes.

从卦中数据看,当前的托管堆也才 692M,和当前的 3G 相差甚远,这就说明这个程序出现了比较麻烦的 非托管内存泄漏,接下来回头看下内存地址段发现 Heap=1.8G ,有了这个数据后用 !heap -s 观察下地址段。


0:000> !heap -s


************************************************************************************************************************
                                              NT HEAP STATS BELOW
************************************************************************************************************************
LFH Key                   : 0x3861e2c156213079
Termination on corruption : ENABLED
          Heap     Flags   Reserv  Commit  Virt   Free  List   UCR  Virt  Lock  Fast 
                            (k)     (k)    (k)     (k) length      blocks cont. heap 
-------------------------------------------------------------------------------------
000001b37a6b0000 00000002  194824 183768 194432  29846  1716    20   30   6fa1   LFH
    External fragmentation  16 % (1716 free blocks)
000001b37a4e0000 00008000      64      8     64      6     1     1    0      0      
000001b37c140000 00001002    3516   2492   3124    476    69     3    0      0   LFH
    External fragmentation  19 % (69 free blocks)
000001b37c380000 00001002      60     36     60      8     3     1    0      0      
000001b37c360000 00041002      60      8     60      5     1     1    0      0      
000001b37d510000 00001002    1472     88   1080     38     7     2    0      0   LFH
000001b320a10000 00001002    1472    204   1080     71    12     2    0      0   LFH
000001b327a60000 00001002     452     32     60      4     3     1    0      0   LFH
000001b3292b0000 00001002 1513284 1215876 1512892  74984  6445   924    4 2e72c3   LFH
    Virtual address fragmentation  19 % (924 uncommited ranges)
    Lock contention  3044035 
000001b327e80000 00001002    1472    812   1080    439    11     2    0      2   LFH
000001b327cb0000 00001002    3516   1140   3124    519    12     3    0      0   LFH
    External fragmentation  45 % (12 free blocks)
000001b327ec0000 00001002    1472    824   1080    468    10     2    0      0   LFH
000001b327cc0000 00001002    1472   1012   1080    441    11     2    0      0   LFH
-------------------------------------------------------------------------------------

从卦中数据看当前的内存都被 Heap=000001b3292b0000 这个私有heap给吃掉了,看样子是某个程序为了某个目的单独分配的,由于没有开启 ust ,这里就没法进行下去了,接下来陷入了迷茫。

2. 在绝望中寻找希望

没有开启ust是不是就没有突破口了呢?大多情况下是的,但作为调试师,需要具备在 绝望中寻找希望 的能力,再回头看地址段,发现 TEB=319,也就说当前程序有 319 个线程,对于一个窗体程序来说这么多线程很明显是一个异常信号,那这个就是突破口,先用 !tp 观察下托管线程列表。

从卦中数据看基本都是线程池的工作线程,为什么会开启这么多线程呢?第一个反应就是线程是不是卡住了?马上用 !syncblk 命令做下验证。


0:000> !syncblk
Index         SyncBlock MonitorHeld Recursion Owning Thread Info          SyncBlock Owner
 2363 000001B3984D6928          381         1 000001B335581A80 607c 135   000001b35e3a0d98 System.Object
-----------------------------
Total           2410
CCW             301
RCW             126
ComClassFactory 1
Free            1783

我去。。。卦中的数据又让我看到了希望!原来有190 个线程卡在 System.Object 锁上,赶紧找个线程观察下线程栈,为了隐私我就多隐藏一点。


0:263> ~~[5a2c]s
ntdll!NtWaitForMultipleObjects+0x14:
00007fff`c800fec4 c3              ret
0:292> !clrstack
OS Thread Id: 0x5a2c (292)
        Child SP               IP Call Site
0000002E98DFEB48 00007fffc800fec4 [HelperMethodFrame_1OBJ: 0000002e98dfeb48] System.Threading.Monitor.ReliableEnter(System.Object, Boolean ByRef)
0000002E98DFECA0 00007fff12dd2ca3 xxx.SqliteHelper.Insert[[System.__Canon, System.Private.CoreLib]](System.__Canon, System.String ByRef)
...
0000002E98DFF220 00007fff136902b6 System.Threading.Tasks.Task.ExecuteWithThreadLocal(System.Threading.Tasks.Task ByRef, System.Threading.Thread)
0000002E98DFF2D0 00007fff12d1a12b System.Threading.ThreadPoolWorkQueue.Dispatch()
0000002E98DFF360 00007fff136de091 System.Threading.PortableThreadPool+WorkerThread.WorkerThreadStart()
0000002E98DFF6B0 00007fff7115aed3 [DebuggerU2MCatchHandlerFrame: 0000002e98dff6b0] 

从卦中可以看到当前卡在 SqliteHelper.Insert 方法上,这到底是何方神圣?赶紧看一下代码。


Task.Run 去跑一个异步逻辑,是一个编程大坑,一旦这个 Task.Run 运行比较慢或者前端请求比较大,很容易造成线程饥饿,从这个程序中的 SetBlob 方法来看,就是将 byte[] 丢到 SqlLite 里,所以这个非托管内存泄漏其实是 Sqlite 在非托管层持有的数据。

挖到了根子上的原因之后,解决办法就比较简单了。

  1. 尽量的批量化Insert,不要用 foreach 一条一条的 Insert
  2. 用单独线程队列化处理,不要用偷懒式 Task.Run

三:总结

这次分析之旅是典型的 在绝望中寻找希望,调试者需要具备沉着冷静的心态,坚持不放弃最终在 内存段 的 TEB 上找到了寻找真相的突破口。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/522500.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

阿里云服务器可以干嘛?能干啥你还不知道么!

阿里云服务器可以干嘛&#xff1f;能干啥你还不知道么&#xff01;简单来讲可用来搭建网站、个人博客、企业官网、论坛、电子商务、AI、LLM大语言模型、测试环境等&#xff0c;阿里云百科aliyunbaike.com整理阿里云服务器的用途&#xff1a; 阿里云服务器活动 aliyunbaike.com…

[大模型]大语言模型量化方法对比:GPTQ、GGUF、AWQ

在过去的一年里&#xff0c;大型语言模型(llm)有了飞速的发展&#xff0c;在本文中&#xff0c;我们将探讨几种(量化)的方式&#xff0c;除此以外&#xff0c;还会介绍分片及不同的保存和压缩策略。 说明&#xff1a;每次加载LLM示例后&#xff0c;建议清除缓存&#xff0c;以…

【Java设计模式】创建型——抽象工厂模式

目录 背景/问题解决方案&#xff1a;抽象工厂模式解析生活场景模拟上一章的案例图解 意图主要解决何时使用如何解决关键代码抽象工厂模式涉及多个角色&#xff1a; 代码示例优点缺点应用场景 背景/问题 在某些情况下&#xff0c;需要创建一系列相关或相互依赖的对象&#xff0…

一些Java面试题

1、 Java语言有哪些特点 1、简单易学、有丰富的类库 2、面向对象&#xff08;Java最重要的特性&#xff0c;让程序耦合度更低&#xff0c;内聚性更高&#xff09; 3、与平台无关性&#xff08;JVM是Java跨平台使用的根本&#xff09; 4、可靠安全 5、支持多线程 2、面向对象和…

07 Python进阶:多线程

python线程概念 在 Python 中&#xff0c;线程&#xff08;Thread&#xff09;是用于实现多任务并发执行的基本单元。线程允许程序同时执行多个部分&#xff0c;每个部分称为一个线程&#xff0c;因此能够提高程序的效率&#xff0c;特别适用于需要同时执行多个任务的情况。下面…

StarRocks实战——华米科技埋点分析平台建设

目录 前言 一、原有方案及其痛点 二、引入StarRocks 三、方案改造 3.1 架构设计 3.2 数据流程 3.3 性能指标 3.4 改造收益 前言 华米科技是一家基于云的健康服务提供商&#xff0c;每天都会有海量的埋点数据&#xff0c;以往基于HBase建设的埋点计算分析项目往往效率上…

2024.4.2-day07-CSS 盒子模型(显示模式、盒子模型)

个人主页&#xff1a;学习前端的小z 个人专栏&#xff1a;HTML5和CSS3悦读 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结&#xff0c;欢迎大家在评论区交流讨论&#xff01; 文章目录 作业 2024.4.2 学习笔记CSS标签元素显示模式1 块元素2 行内元素3 行内块元素4…

Linux | MySQL安装Workbench图形化

环境:rhel8 MySQL8 下载软件包 官网软件包地址&#xff1a; MySQL &#xff1a;&#xff1a; 下载 MySQL Workbenchhttps://dev.mysql.com/downloads/workbench/我这里下载的是 mysql-workbench-community-8.0.24-1.el8.x86_64.rpm 解决依赖 用rpm安装发现缺少依赖 [rooth…

3dmax经常染失败?优化方法提升染质量!

在三维建模和渲染的过程中&#xff0c;优化模型和场景的效率是至关重要的。以下是一些提升效率的方法&#xff1a; 模型简化&#xff1a;在创建模型时&#xff0c;应尽量减少使用的命令和修改器的数量。这是因为命令和修改器越多&#xff0c;消耗的内存和CPU资源也就越多&…

FJSP:巨型犰狳优化算法(Giant Armadillo Optimization,GAO)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

一、柔性作业车间调度问题 柔性作业车间调度问题&#xff08;Flexible Job Shop Scheduling Problem&#xff0c;FJSP&#xff09;&#xff0c;是一种经典的组合优化问题。在FJSP问题中&#xff0c;有多个作业需要在多个机器上进行加工&#xff0c;每个作业由一系列工序组成&a…

大米自动化生产线设备:现代粮食加工的核心力量

随着科技的不断进步和粮食加工行业的快速发展&#xff0c;大米自动化生产线设备在现代粮食加工中的地位愈发重要。这些设备不仅大大提高了生产效率&#xff0c;还保证了产品的质量和安全&#xff0c;成为了现代粮食加工行业不可或缺的核心力量。 一、自动化生产线设备助力效率提…

达托机器人(DRB)平台的安全性和前景是否可靠?

在当今数字化时代&#xff0c;技术创新不仅是企业成功的关键&#xff0c;也是整个行业的驱动力。在这个背景下&#xff0c;达托机器人&#xff08;DRB&#xff09;脱颖而出&#xff0c;以其创世团队的坚实基础和平台的可靠前景&#xff0c;引起了业界的广泛关注。 首先&#xf…

消息队列MQ(面试题:为什么使用MQ)

一、什么是mq? MQ全称 Message Queue&#xff08;消息队列&#xff09;&#xff0c;是在消息的传输过程中保存消息的容器。多用于分布式系统之间进行通信&#xff0c;解耦。 二、常见的mq产品 RabbitMQ、RocketMQ、ActiveMQ、Kafka、ZeroMQ、MetaMq RabbitMQ: One broker …

人工智能、深度伪造和数字身份:企业网络安全的新前沿

深度伪造&#xff08;Deepfakes&#xff09;的出现打响了网络安全军备竞赛的发令枪。对其影响的偏执已经波及到一系列领域&#xff0c;包括政治错误信息、假新闻和社交媒体操纵。 深度伪造将加剧公共领域对信任和沟通的本已严峻的压力。这将理所当然地引起监管机构和政策制定者…

java.lang.NoClassDefFoundError: javax/validation/constraints/Min

1、报错截图 2、解决办法 添加依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId> </dependency>

浮点数在内存中的存储【详解】

浮点数在内存中的存储 浮点数存储规则小数点后数值的二进制转换float和double存储图示优化存储方案E不全为0或不全为1E全为0E全为1 浮点数存储规则 大家都知道整型数据是以补码的方式存放在内存中。以下几个概念是需要知道的&#xff1a; 原码&#xff0c;补码&#xff0c;反…

C++入门语法(命名空间缺省函数函数重载引用内联函数nullptr)

目录 前言 1. 什么是C 2. C关键字 3. 命名空间 3.1 命名空间的定义 3.2 命名空间的使用 4. C输入和输出 5. 缺省函数 5.1 概念 5.2 缺省参数分类 6. 函数重载 6.1 概念 6.2 为何C支持函数重载 7. 引用 7.1 概念 7.2 特性 7.3 常引用 7.4 引用与指针的区别 7…

docker-compose安装dozzle

dozzle是一个docker日志的webui工具 安装配置 docker-compose.yaml version: "3" services:dozzle:container_name: dozzleimage: amir20/dozzle:v4.11.4volumes:- /var/run/docker.sock:/var/run/docker.sockrestart: unless-stoppedports:- 20342:8080networks:cu…

人工智能 - 服务于谁?

人工智能服务于谁&#xff1f; 人工智能服务于生存&#xff0c;其最终就是服务于战争&#xff08;热战、技术战、经济战&#xff09; 反正就是为了活着而战的决策。 既然人工智能所有结果&#xff0c;来自大数据的分挖掘&#xff08;分析&#xff09;也就是数据的应用&#x…

施耐德中高端PLC仿真器

参考文档&#xff1a;《Unity Pro PLC 仿真器》EIO0000001719.06 &#xff08;Control Expert 就是 Unity Pro 最新版本换了个名字&#xff0c;两者操作基本相同&#xff09; https://www.schneider-electric.cn/zh/download/document/EIO0000001719/ 1. 适用 PLC 这里使用的…