AIGC实战——ProGAN(Progressive Growing Generative Adversarial Network)

AIGC实战——ProGAN

    • 0. 前言
    • 1. ProGAN
    • 2. 渐进式训练
    • 3. 其他技术
      • 3.1 小批标准差
      • 3.2 均等学习率
      • 3.3 逐像素归一化
    • 4. 图像生成
    • 小结
    • 系列链接

0. 前言

我们已经学习了使用生成对抗网络 (Generative Adversarial Network, GAN) 解决各种图像生成任务。GAN 的模型架构和训练过程具有很高的灵活性,通过改进 GAN 架构设计和训练过程,研究人员提出了多种不同的网络架构,本节中,我们将介绍 ProGAN (Progressive Growing Generative Adversarial Network) 架构。

1. ProGAN

ProGAN (Progressive Growing Generative Adversarial Network )是由 NVIDIA2017 年提出的生成对抗网络 (Generative Adversarial Network, GAN) 模型,旨在提高 GAN 训练的速度和稳定性。在 ProGAN 中,并不直接对高分辨率图像进行训练,而是首先在低分辨率图像(例如 4 × 4 像素的图像)上训练生成器和判别器,然后在整个训练过程中逐渐增加网络层数以提高分辨率。需要注意的是,训练 ProGAN 需要大量的计算资源。

2. 渐进式训练

ProGAN 同样需要构建两个独立的网络,生成器和判别器,在训练过程中它们交替训练。
在普通 GAN 中,生成器始终输出高分辨率图像,即使在训练的早期阶段也是如此。但这种策略可能并非最优选择,生成器可能在训练的早期阶段很难学习到复杂特征。首先训练一个轻量级的 GAN 来生成准确的低分辨率图像,然后逐渐增加分辨率,这就是渐进式训练 (progressive training) 的核心思想。ProGAN 通过多个阶段进行训练,使用插值方法将训练集中图像尺寸缩放到 4 × 4 作为初始阶段,如下图所示。

渐进式训练

首先训练生成器将潜在输入噪声向量z(例如,长度为 512 )转换为形状为 4 × 4 × 3 的图像。相应的判别器将需要将尺寸为 4 × 4 × 3 的输入图像转换为标量预测,第一步中网络架构如下图所示。

网络架构

生成器中的蓝色框表示将一组特征图转换为 RGB 图像 (toRGB) 的卷积层,判别器中的蓝色框表示将 RGB 图像转换为一组特征图 (fromRGB) 的卷积层。
在原始 ProGAN 模型中,使用 80 万张图像训练这两个网络。接下来,我们需要了解如何扩展生成器和判别器以处理 8 × 8 像素的图像。
为了扩展生成器和判别器,我们需要混合使用其他神经网络层,可以分为过渡 (transition) 和稳定 (stabilization) 两个阶段。

网络架构

在过渡阶段,生成器会在现有的网络中附加新的上采样和卷积层,并使用残差连接来传递已经过训练的 toRGB 层的输出。需要注意的是,新的网络层最初使用参数 α α α 进行掩码处理,该参数在过渡阶段逐渐从 0 增加到 1,以便允许更多的新 toRGB 输出通过,减少现有 toRGB 层的输出。这是为了避免在添加新层时对网络造成冲击。
最终,旧的 toRGB 层输出被完全掩码,网络进入稳定阶段,在这一阶段,网络可以进一步调整输出,而不需要经过旧的 toRGB 层的输出。
鉴别器使用类似的过程,如下图所示。需要在输入图像之后,添加新的下采样和卷积层。现有的fromRGB层通过残差连接相连,并在过渡阶段随着新层的添加逐渐被淘汰,稳定阶段允许鉴别器使用新层进行微调。

模型架构

需要注意的是,即使网络是渐进训练的,也不会冻结任何网络层,在整个训练过程中,所有网络层都保持可训练状态。
ProGAN 中图像尺寸从 4 × 4 开始逐渐增长到 8 × 816 × 1632 × 32,直到 1,024 × 1,024,如下图所示。

整体架构

生成器和鉴别器的整体结构如下图所示。

模型架构

3. 其他技术

除了渐进训练外,ProGAN 还使用了包括小批标准差、均等学习率和逐像素归一化等技术。

3.1 小批标准差

小批标准差(Minibatch Standard Deviation)可以用于增加样本的多样性和减少模式崩溃的问题。在传统的 GAN 中,生成器网络接收一个随机噪声向量作为输入,并生成相应的合成样本。然而,这种方法存在一个问题,即生成的样本可能会过于相似,缺乏多样性。这是因为生成器通过学习大量样本的平均特征来生成图像,导致样本之间缺乏差异。
为了解决这个问题,小批标准差技术引入了一种新的特征向量计算方法。具体而言,它在生成器网络的某一层中计算生成样本的特征向量,并在训练过程中使用这些特征向量的标准差作为一个额外的特征。这个标准差可以理解为表示一小批(minibatch)样本之间的差异程度。
通过引入小批标准差,判别器网络不仅可以评估生成样本与真实样本之间的差异,还可以考虑生成样本之间的多样性。这使得生成器更倾向于生成多样性更高的样本,避免生成过于相似的输出。
小批标准差技术对于解决模式崩溃问题也是有效的。通过使用小批标准差,生成器可以更好地学习到数据集的整体分布,避免陷入单一模式。

3.2 均等学习率

均等学习率 (Equalized Learning Rates) 是一种用于训练神经网络的技术,旨在解决传统神经网络中的权重初始化问题。传统的神经网络在权重初始化时通常使用高斯分布或均匀分布随机初始化,这通常有助于提高训练过程的稳定性,但这种方法缺乏可解释性和普适性,导致网络可能出现梯度爆炸、梯度消失等问题。
AdamRMSProp 等优化器会规范化每个权重的梯度更新,使得更新的大小与权重的尺度(大小)无关。然而,这意味着动态范围较大的权重(即,输入较少的层)比动态范围较小的权重(即,输入较多的层)调整所需的时间相对较长。这会导致 ProGAN 中的生成器和判别器不同层的训练速度不平衡,因此需要使用均等学习率来解决这个问题。
均等学习率利用了批归一化的基本原理,在每一层的输入上动态地归一化权重,从而使每一层的输出具有相似的数量级。在实际应用中,通常通过将每一层的权重乘以一个标准化因子来实现。这个标准化因子可以根据每一层的权重大小和输入维度自适应地计算,从而保证每一层的权重归一化后具有相似的数量级。
除了权重归一化之外,均等学习率还通过缩放每一层的学习率来实现更加稳定的优化。在传统神经网络中,学习率通常是固定的,并在每次训练迭代中应用。然而,在使用均等学习率时,学习率会根据每一层的权重缩放,从而避免过度更新较小的权重(由于它们具有较大的梯度)或过度更新较大的权重(由于它们具有较小的梯度)。

3.3 逐像素归一化

逐像素归一化 (Pixelwise normalization) 是一种在图像生成任务中常用的技术,旨在提高生成模型的稳定性和样本质量。与传统的批归一化不同,批归一化是对整个批数据进行归一化处理,而逐像素归一化则是将每个像素独立地进行归一化。
在传统的生成模型中,生成器网络通常接收一个随机噪声向量作为输入,并生成一张完整的图像。然而,由于每个像素都是独立的,它们具有不同的分布和范围。这导致生成器在训练过程中可能会过度关注某些像素,而忽略其他像素的贡献,导致生成图像出现不均匀的色彩分布或噪点。
为了解决这个问题,逐像素归一化将每个像素独立地进行归一化处理,使得图像在各个像素上具有相似的分布。具体而言,对于每个像素,逐像素归一化计算该像素在所有样本中的均值和标准差,并将像素的原始值减去均值,然后除以标准差。这样做可以将每个像素的值缩放到接近零均值和单位方差的范围内,使得生成器更容易学习到图像的结构和细节。
逐像素归一化增加了生成器对每个像素的敏感性,并减少了样本之间的差异。这有助于生成器更好地捕捉图像的局部细节和全局结构,提高生成图像的质量和真实度。在逐像素归一化层并不存在可训练的权重。

4. 图像生成

除了 CelebA 数据集外,ProGAN 还是用大规模场景理解 (Large-scale Scene Understanding LSUN) 数据集的图像进行训练,生成的结果样本如下所示,这充分证明了 ProGAN 在图像生成方面的强大性能,并为 StyleGANStyleGAN2 等模型奠定了基础。

生成结果

小结

本节中,详细介绍了 ProGAN 模型的基本架构与训练流程。ProGAN 中首次提出了渐进训练概念,首先在低分辨率图像上训练生成器和判别器,然后在整个训练过程中逐渐增加网络层数以提高分辨率。

系列链接

AIGC实战——生成模型简介
AIGC实战——深度学习 (Deep Learning, DL)
AIGC实战——卷积神经网络(Convolutional Neural Network, CNN)
AIGC实战——自编码器(Autoencoder)
AIGC实战——变分自编码器(Variational Autoencoder, VAE)
AIGC实战——使用变分自编码器生成面部图像
AIGC实战——生成对抗网络(Generative Adversarial Network, GAN)
AIGC实战——WGAN(Wasserstein GAN)
AIGC实战——条件生成对抗网络(Conditional Generative Adversarial Net, CGAN)
AIGC实战——自回归模型(Autoregressive Model)
AIGC实战——改进循环神经网络
AIGC实战——像素卷积神经网络(PixelCNN)
AIGC实战——归一化流模型(Normalizing Flow Model)
AIGC实战——能量模型(Energy-Based Model)
AIGC实战——扩散模型(Diffusion Model)
AIGC实战——GPT(Generative Pre-trained Transformer)
AIGC实战——Transformer模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/521735.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023 年网络安全热点技术发展态势

文章目录 前言一、人工智能信息技术迎来井喷式发展期二、零信任网络安全架构即将投入实际部署三、美国全面推动军政业务向云环境迁移四、专用太空软硬件与独立卫星网络并行发展五、量子信息技术与网络安全领域加速融合前言 在 2023 年取得进展的信息技术不在少数。从网络安全的…

从300亿分子中筛出6款,结构新且易合成,斯坦福抗生素设计AI模型登Nature子刊

ChatGPT狂飙160天,世界已经不是之前的样子。 新建了免费的人工智能中文站https://ai.weoknow.com 新建了收费的人工智能中文站https://ai.hzytsoft.cn/ 更多资源欢迎关注 全球每年有近 500 万人死于抗生素耐药性,因此迫切需要新的方法来对抗耐药菌株。 …

HTML5.Canvas简介

1. Canvas.getContext getContext(“2d”)是Canvas元素的方法,用于获取一个用于绘制2D图形的绘图上下文对象。在给定的代码中,首先通过getElementById方法获取id为"myCanvas"的Canvas元素,然后使用getContext(“2d”)方法获取该Ca…

音视频开发之旅(83)- 腾讯音乐开源高质量唇形同步模型--MuseTalk

目录 1.效果展示 2.原理学习 3.流程分析 4.资料 一、效果展示 -- (推理素材来源于网络,如有侵权,联系立删!) 唱歌效果(歌曲有suno生成) 用于推理的视频素材来源于网络,如有侵权&…

Java中常见的排序算法

常见算法可以分为两大类:   非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序。   线性时间非比较类排序:不通过比较来决定元素间的相对次序…

Windows应急响应

1.排查隐藏账号 查看注册表 找到攻击者用户目录文件 排查用户异常 eventvwr.msc 分析用户登录日志 排查可疑端口 排查可疑进程 检查启动项、计划任务和服务 查看系统补丁信息 安装火绒,在安全工具里有火绒剑 计划任务 使用D盾对主机进行检测,发现隐藏账户…

python自定义库的打包和安装

要将自定义库安装到python的三方包地址site-packages中,除了可以直接的复制之外,更为合理科学的方法是通过build和install的方式进行。因为直接复制仅仅作为一种临时的简单的方法,而且只能针对源码进行,也不好进行科学管理&#x…

AJAX —— 学习(三)(完结)

目录 一、jQuery 中的 AJAX (一)get 方法 1.语法介绍 2.结果实现 (二)post 方法 1.语法介绍 2.结果实现 (三)通用型的 AJAX 方法 1.语法介绍 2.结果实现 二、AJAX 工具库 axios &#xff08…

简历复印--原型模式

1.1 夸张的简历 简历的打印。"对编程来说,简单的复制粘贴极有可能造成重复代码的灾难。我所说的意思你根本还没听懂。那就以刚才的例子,我出个需求你写写看,要求有一个简历类,必须要有姓名,可以设置性别和年龄&am…

第十四届蓝桥杯省赛大学C组(C/C++)填充

原题链接:填充 有一个长度为 n 的 01 串,其中有一些位置标记为 ?,这些位置上可以任意填充 0 或者 1,请问如何填充这些位置使得这个 01 串中出现互不重叠的 0 和 1 子串最多,输出子串个数。 输入格式 输入一行包含一…

SQLite 4.9的 OS 接口或“VFS”(十三)

返回:SQLite—系列文章目录 上一篇:SQLite字节码引擎(十二) 下一篇:SQLite 4.9的虚拟表机制(十四) 1. 引言 本文介绍了 SQLite OS 可移植性层或“VFS” - 模块位于 SQLite 实现堆栈底部 提供跨操作系统的可移植性。 VFS是Virtual File…

5560.树的直径

蛮不错的一道题目&#xff0c;你要利用树的性质分析出&#xff0c;你只需要维护上一次的树的直径的两个端点就好了 #include<iostream>using namespace std; using ll long long; using pii pair<int,int>; const int N 6e510; const int inf 0x3f3f3f3f; cons…

算法:树形dp(树状dp)

文章目录 一、树形DP的概念1.基本概念2.解题步骤3.树形DP数据结构 二、典型例题1.LeetCode&#xff1a;337. 打家劫舍 III1.1、定义状态转移方程1.2、参考代码 2.ACWing&#xff1a;285. 没有上司的舞会1.1、定义状态转移方程1.2、拓扑排序参考代码1.3、dfs后序遍历参考代码 一…

MySQL复制拓扑4

文章目录 主要内容一.启用GUID并配置循环复制1.其中&#xff0c;UUID用来唯一标识每一个服务器&#xff0c;事务的编号记录了在该服务器上执行的事务的顺序。使用SELECT server_uuid\G命令可以查看服务器的UUID&#xff0c;sever1的UUID值显示如下&#xff1a;代码如下&#xf…

Vue3_2024_7天【回顾上篇watch常见的后两种场景】

随笔&#xff1a;这年头工作不好找咯&#xff0c;大家有学历提升的赶快了&#xff0c;还有外出人多注意身体&#xff0c;没错我在深圳这边阳了&#xff0c;真的绝啊&#xff0c;最尴尬的还给朋友传染了&#xff01;&#xff01;&#xff01; 之前三种的监听情况&#xff0c;监听…

文本识别 OCR 解决方案

Capture2Text 便携式 OCR 工具 Capture2Text 能够使用键盘快捷键快速对屏幕的一部分进行 OCR。 默认情况下&#xff0c;生成的文本将保存到剪贴板。支持中文、英文、法文、德文、日文、韩文、俄文、西班牙文等 90 多种语言。 Capture2Text 是便携式工具&#xff0c;不需要安装…

快速了解FastAPI与Uvicorn是什么?

概念 什么是Uvicorn Python Uvicorn 是一个快速的 ASGI&#xff08;Asynchronous Server Gateway Interface&#xff09;服务器&#xff0c;用于构建异步 Web 服务。它基于 asyncio 库&#xff0c;支持高性能的异步请求处理&#xff0c;适用于各种类型的 Web 应用程序。 Uvi…

SEO超级外链工具源码

源码简介 超级外链工具&#xff0c;是一款在线全自动化发外链的推广工具。使用本工具可免费为网站在线批量增加外链&#xff0c;大大提高外链发布工作效率&#xff0c;是广大草根站长们必备的站长工具。 搭建环境 PHP 5.6 安装教程 上传源码压缩包到网站目录并解压即可 首…

Linux安装最新版Docker完整教程

参考官网地址&#xff1a;Install Docker Engine on CentOS | Docker Docs 一、安装前准备工作 1.1 查看服务器系统版本以及内核版本 cat /etc/redhat-release1.2 查看服务器内核版本 uname -r这里我们使用的是CentOS 7.6 系统&#xff0c;内核版本为3.10 1.3 安装依赖包 …

【数据结构(二)】顺序表与ArrayList

❣博主主页: 33的博客❣ ▶文章专栏分类:数据结构◀ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; &#x1faf5;&#x1faf5;&#x1faf5;关注我带你学更多数据结构知识 目录 1.前言2.定义IList接口3.MyArraylist实现接口3.1定义成员变量与构造方法3.2添加元素3.3…