自动驾驶汽车关键技术_感知

自动驾驶汽车关键技术|感知

image

附赠自动驾驶学习资料和量产经验:链接

  • 两套标准

分别由美国交通部下属的国家高速路安全管理局(NationalHighwayTraffic Safety Administration ,NHSTA) 和国际汽车工程师协会(Societyof Automotive Engineers,SAE) 制定的。

image

自动驾驶系统结构

自动驾驶是一个由激光雷达(LiDAR) 、毫米波雷达(RADAR) 、摄像机(Camera ) 、全球定位系统(GPS ) 、惯性测量单元(IMU) 等多个传感器和子系统组成的高级复杂性系统性工程, 结构如图1 所示。

image

自动驾驶的关键技术为感知(Perception ) 、规划(Planning ) 和控制(Control ) 三部分。

感知部分和车辆传感器硬件交互与通信,规划主要负责汽车的行为等的计算,控制则是对汽车元器件的电子化操作。

image

感知

感知主要是通过环境感知进行定位。

Ø 环境感知(Environmental Perception ,EP)指对于环境的场景理解能力,例如障碍物的类型、道路标志及标线、行人车辆的检测、交通信号等数据的语义分类。

Ø 定位(Localization )是对感知结果的后处理, 通过定位功能从而帮助自动车了解其相对于所处环境的位置。

环境感知

自动驾驶系统的环境感知部分通常需要获取大量周围环境信息,确保自动车对车身周围环境的正确理解和对应决策。

具体来说包括:车道线检测、红绿灯识别、交通标识牌识别、行人检测、车辆的检测等。

image

车道线检测的两大主流方法是基于视觉的车道线检测和基于雷达的车道线检测。

  • 基于雷达的车道线检测直接从点云中检测车道线,该方法对雷达的线束要求很高,32线及以下的激光雷达难以用于车道线检测,因为点云太稀疏,车道线的特征不明显。而64线及以上的激光雷达成本高昂,短期内难以大规模推广应用。

image

  • 基于视觉的检测方法,简便直观易于理解,处理速度快,成本低,容易被市场所接受;

image

但该方法使用的硬件设备一一相机,其自身存在局限性,存在相机形变且容易受外界环境的影响,

尤其是在天气、光照等条件恶劣的情况下,容易对检测结果造成一定的偏差甚至无法检测。

可使用多传感器融合技术,先在图像中检测出车道线,然后将激光雷达生成的点投射到图像上,找出落在车道线上的点在激光雷达坐标系中的坐标,通过这些坐标即可拟合出激光雷达坐标系中的车道线。

image

红绿灯识别有两种方式,

  • 一种是基于V2X,即智能网联技术。

image

  • 另一种方式是基于人工智能的视觉算法,它也是目前业界使用最广泛的一种方法

image

交通标识牌识别的方式与红绿灯检测类似,可以直接使用深度神经网络对原始图像进行交通标识牌检测。也可以结合高精度地图,将交通标志信息存放在高精度地图中,在车辆行驶的过程中,直接根据车辆的位置从高精度地图中获取交通标志信息。

image

人、车辆的检测常用的方式有两种,

  • 一种是直接使用激光雷达的数据进行目标检测。

image

  • 另一种是融合激光雷达和相机进行目标检测。激光雷达能够提供精确的位置和大小信息,基于图像的深度学习更擅长目标类别的识别。

image

定位

定位是一台自动车的必备基础,它需要告诉车辆相对于外界环境的精确位置。在城市复杂道路行驶场景下,定位精度要求误差不超过10cm,如果定位位置偏差过大,那么在城市道路行驶中,车辆轮胎就很容易在行驶过程中擦到路牙,剐蹭到护栏等,还会引发爆胎等车辆驾驶安全问题,严重的甚至会引发交通安全事故。

image

目前使用最广泛的自动车定位方法是全球定位系统(GlobalPositioningSystem,GPS),但GPS的定位,精度越高,GPS和惯性导航等传感器的价格也就相对越昂贵。除此之外还有:

  • 点云地图(如图5所示)的雷达定位、

  • 雷达和摄像机融合定位、

  • 摄像机定位惯性导航系统(INS)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/521571.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

复现chatgpt_ros,需要openapi key

1. 前置工作: 现在ubuntu系统是20.04ros1,现在用docker新建并安装ros2: 最简单的,用大佬的一键安装: wget http://fishros.com/install -O fishros && . fishros 其次自己装…

代码随想录刷题——5双指针法

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言5.1 移除元素(3.30)5.2 翻转字符串(3.30)5.3 替换数字(3.30)5.4 翻转字符串里的单词(3.3…

FlutterFlame游戏实践#08 | 打砖块 -关卡设计

theme: cyanosis 本文为稀土掘金技术社区首发签约文章,30天内禁止转载,30天后未获授权禁止转载,侵权必究! Flutter\&Flame 游戏开发系列前言: 该系列是 [张风捷特烈] 的 Flame 游戏开发教程。Flutter 作为 全平台 的 原生级 渲…

SQL注入---POST注入

文章目录 前言一、pandas是什么?二、使用步骤 1.引入库2.读入数据总结 一. POST提交概述 在Webshell文章中介绍过post提交和get提交的区别,这里不再赘述 post提交和get提交的区别: get方式提交URL中的参数信息,post方式则是将信…

【学习分享】小白写算法之选择排序篇

【学习分享】小白写算法之选择排序篇 前言一、什么是选择排序算法二、选择排序算法如何实现三、C语言实现算法四、复杂度计算五、算法稳定性六、小结 前言 简单排序有三种,冒泡排序,插入排序和选择排序。这三种排序的算法算是入门级别的,打好…

UART设计

一、UART通信简介 通用异步收发器, 特点:串行、异步、全双工通信 优点:通信线路简单,传输距离远 缺点:传输速度慢 数据传输速率:波特率(单位:baud,波特) …

解决IDEA下载mysql驱动太慢

下载驱动 下载页 解压后,提取**.jar**文件,放到一个目录下(你自己决定这个目录) 打开IDEA项目,点击右侧的数据库选项卡 在打开的页面,点击号 依次选择:数据源->MySQL 在弹出的页面,依次选择&#…

注解式 WebSocket - 构建 群聊、单聊 系统

目录 前言 注解式 WebSocket 构建聊天系统 群聊系统(基本框架) 群聊系统(添加昵称) 单聊系统 WebSocket 作用域下无法注入 Spring Bean 对象? 考虑离线消息 前言 很久之前,咱们聊过 WebSocket 编程式…

华为ensp中高级acl (控制列表) 原理和配置命令 (详解)

作者主页:点击! ENSP专栏:点击! 创作时间:2024年4月6日23点18分 高级acl(Access Control List)是一种访问控制列表,可以根据数据包的源IP地址、目标IP地址、源端口、目标端口、协议…

【ARM 嵌入式 C 常用数据结构系列 25.1 -- linux 双向链表 list_head 使用详细介绍】

请阅读【嵌入式开发学习必备专栏 】 文章目录 内核双向链表双向链表的数据结构初始化双向链表在双向链表中添加元素遍历双向链表链表使用示例注意事项 内核双向链表 在Linux内核中,双向链表是一种广泛使用的数据结构,允许从任意节点高效地进行前向或后向…

STM32F407-SRAM

SRAM—> 内存 Flash–>硬盘 外置SRAM 可以存储1M数据 地址线:A0-A18;2^18次方;512K个数据块 每个数据块是2字节; 数据线:D0-D15 UB/LB 掩码;低电平有效 UB -》低电平-》数据高字节有效 LB-》低电平…

golang 选择排序

学习笔记~ // Author sunwenbo // 2024/4/6 21:49 package mainimport "fmt"/* 选择排序基本介绍选择式排序也属于内部排序法,是从预排序的数据中按指定的规则选出某一元素,经过和其他元素重整,再依原则交换位置后达到…

轻量的 WebHook 工具:歪脖虎克

本篇文章聊聊轻量的网络钩子(WebHook)工具:歪脖虎克。 写在前面 这是一篇迟到很久的文章,在 21 年和 22 年的时候,我分享过两篇关于轻量的计划任务工具 Cronicle 的文章:《轻量的定时任务工具 Cronicle&a…

Linux(Ubuntu)中创建【samba】服务,用于和Windows系统之间共享文件

目录 1.先介绍一下什么是Samba 2.安装,配置服务 安装 配置(smb.conf) 配置用户 3.出现的问题(Failed to add entry for user XXXX) 4.创建文件夹 5.windows访问 1.先介绍一下什么是Samba Samba是一个开源的软…

2024.4.3-[作业记录]-day08-CSS 盒子模型(溢出显示、伪元素)

个人主页:学习前端的小z 个人专栏:HTML5和CSS3悦读 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结,欢迎大家在评论区交流讨论! 文章目录 作业 2024.4.3-学习笔记css溢出显示单行文本溢出显示省略号多行文本溢出显示省…

【Android】图解View的工作流程原理

文章目录 入口DecorView如何加载到Window中MeasureSpec MeasureView的测量ViewGroup的测量 LayoutView的layout() Draw1、绘制背景3、绘制View内容4、绘制子View6、绘制装饰 入口 DecorView如何加载到Window中 MeasureSpec 该类是View的内部类,封装View的规格尺寸…

C++资源重复释放问题

这不是自己释放了2次&#xff1b; 可能是类互相引用&#xff0c;有类似现象释放资源时引起&#xff1b;还不太了解&#xff1b; 类对象作为函数参数也会引起&#xff1b; 下面是一个简单示例&#xff1b; #include <iostream> #include <string.h> #include &l…

Spark-Scala语言实战(14)

在之前的文章中&#xff0c;我们学习了如何在spark中使用键值对中的fullOuterJoin&#xff0c;zip&#xff0c;combineByKey三种方法。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点…

最优算法100例之36-扑克牌顺子

专栏主页:计算机专业基础知识总结(适用于期末复习考研刷题求职面试)系列文章https://blog.csdn.net/seeker1994/category_12585732.html 题目描述 LL今天心情特别好,因为他去买了一副扑克牌,发现里面居然有2个大王,2个小王(一副牌原本是54张^_^)...他随机从中抽出了…

软考113-上午题-【计算机网络】-IPv6、无线网络、Windows命令

一、IPv6 IPv6 具有长达 128 位的地址空间&#xff0c;可以彻底解决 IPv4 地址不足的问题。由于 IPv4 地址是32 位二进制&#xff0c;所能表示的IP 地址个数为 2^32 4 294 967 29640 亿&#xff0c;因而在因特网上约有 40亿个P 地址。 由 32 位的IPv4 升级至 128 位的IPv6&am…