Redis的主从复制、哨兵模式、集群,概述及部署

目录

一、Redis主从复制

1.1.Redis主从复制的概念

1.2.Redis主从复制的作用

1.3. Redis主从复制的流程

1.4.Redis主从复制的搭建

1.4.1.修改Master节点

1.4.2. 修改Slave节点Redis配置文件 

1.4.3.验证主从效果  

二、Redis 哨兵模式

2.1 哨兵模式的原理

2.2 哨兵模式的作用

2.3 哨兵模式的结构

2.4 哨兵模式的搭建

2.4.1 环境配置

2.4.2 修改 Redis 配置文件

2.4.3 启动哨兵模式 

2.4.4.哨兵节点查看哨兵消息 

2.4.5.故障模拟

2.4.6.验证结果  

2.4.7.故障恢复

三、Redis 群集模式 

3.1.集群的作用,可以归纳为两点

3.1.1.数据分区

3.1.2.高可用

3.2.Redis集群的数据分片

以3个节点组成的集群为例

3.3.搭建Redis 群集模式

3.3.1.初始化环境每台主机安装redis

3.2开启集群功能

 3.3.启动redis节点

 3.4.启动集群

3.5测试群集 

四、总结 

4.1.主从复制总结

4.2.哨兵机制

4.3.redis cluster 集群


一、Redis主从复制

1.1.Redis主从复制的概念

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

1.2.Redis主从复制的作用

数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。

故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。

高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

1.3. Redis主从复制的流程

主从复制的过程 /原理
1、从————>主发送sync同步数据请求

2主redis 会fork一个子进程,然后会产生RDB文件(完全备份的文件)的过程
  2.1 客户端还在持续的写入redis

3、rdb文件 持久化完成后,主redis会将RDB文件和缓存起来的命令推送给我们的从服务器

4、复制、推送完后,主reids 会持续的同步操作命令————>利用AOF(增备)持久化功能 

5、-台redis 接入主从复制之前,会持续利用在下一AOF的方式 同步数据给从服务器

1.4.Redis主从复制的搭建

主机操作系统IP地址软件 / 安装包 / 工具
MasterCentOS7192.168.190.103redis-5.0.7.tar.gz
Slave1CentOS7192.168.190.104redis-5.0.7.tar.gz
Slave2CentOS7192.168.190.105redis-5.0.7.tar.gz
systemctl stop firewalld
setenforce 0
 
yum install -y gcc gcc-c++ make
 
tar zxvf redis-5.0.7.tar.gz -C /opt/
 
cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis install
 
cd /opt/redis-5.0.7/utils
./install_server.sh
 
回车四次,下一步需要手动输入
 
Please select the redis executable path [] /usr/local/redis/bin/redis-server    
 
ln -s /usr/local/redis/bin/* /usr/local/bin/

1.4.1.修改Master节点

192.168.190.103

vim /etc/redis/6379.conf
bind 0.0.0.0            #70行,修改bind 项,0.0.0.0监听所有网段
daemonize yes           #137行,开启守护进程
logfile /var/log/redis_6379.log   #172行,指定日志文件目录
dir /var/lib/redis/6379       #264行,指定工作目录
appendonly yes            #700行,开启AOF持久化功能
 
/etc/init.d/redis_6379 restart

 

1.4.2. 修改Slave节点Redis配置文件 

192.168.104 192.168.190.105

vim /etc/redis/6379.conf
bind 0.0.0.0            #70行,修改bind 项,0.0.0.0监听所有网卡
daemonize yes           #137行,开启守护进程
logfile /var/log/redis_6379.log   #172行,指定日志文件目录
dir /var/lib/redis/6379       #264行,指定工作目录
replicaof 192.168.190.103 6379   #288行,指定要同步的Master节点IP和端口
appendonly yes            #700行,开启AOF持久化功能
 
/etc/init.d/redis_6379 restart

 

1.4.3.验证主从效果  

在Master节点上看日志

tail -f /var/log/redis_6379.log 

 

在Master节点上验证从节点  

redis-cli info replication

 

二、Redis 哨兵模式

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移

2.1 哨兵模式的原理


哨兵(sentinel):是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的 Master 并将所有 Slave 连接到新的 Master。所以整个运行哨兵的集群的数量不得少于3个节点。

2.2 哨兵模式的作用

监控:哨兵会不断地检查主节点和从节点是否运作正常。

自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其他从节点改为复制新的主节点。

通知(提醒):哨兵可以将故障转移的结果发送给客户端。

2.3 哨兵模式的结构


哨兵结构由两部分组成,哨兵节点和数据节点:

哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。

数据节点:主节点和从节点都是数据节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式,所有节点上都需要部署哨兵模式,哨兵模式会监控所有的 Redis 工作节点是否正常,当 Master 出现问题的时候,因为其他节点与主节点失去联系,因此会投票,投票过半就认为这个 Master 的确出现问题,然后会通知哨兵间,然后从 Slaves 中选取一个作为新的 Master。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

2.4 哨兵模式的搭建

2.4.1 环境配置

基于主从复制已搭建完成

主机操作系统IP地址软件 / 安装包 / 工具
MasterCentOS7192.168.190.103redis-5.0.7.tar.gz
Slave1CentOS7192.168.190.104redis-5.0.7.tar.gz
Slave2CentOS7192.168.190.105redis-5.0.7.tar.gz

2.4.2 修改 Redis 配置文件

三个一起修改

systemctl stop firewalld
setenforce 0
 
vim /opt/redis-5.0.7/sentinel.conf
protected-mode no               #17行,关闭保护模式
port 26379                    #21行,Redis哨兵默认的监听端口
daemonize yes                 #26行,指定sentinel为后台启动
logfile "/var/log/sentinel.log"         #36行,指定日志存放路径
dir "/var/lib/redis/6379"           #65行,指定数据库存放路径
sentinel monitor mymaster 192.168.223.10 6379 2 #84行,修改 指定该哨兵节点监控192.168.223.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
sentinel down-after-milliseconds mymaster 30000 #113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000   #146行,故障节点的最大超时时间为180000(180秒)

2.4.3 启动哨兵模式 

先启master,再启slave

cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &
注意!先启动主服务器,再启动从服务器

2.4.4.哨兵节点查看哨兵消息 


redis-cli -p 26379 info sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.190.103:6379,slaves=2,sentinels=3
[1]+  完成                  redis-sentinel sentinel.conf

2.4.5.故障模拟

#在master节点查看redis-server进程号
ps -ef | grep redis
 
#杀死master节点redis-server进程
kill -9 21981

 

2.4.6.验证结果  

tail -f /var/log/sentinel.log

2.4.7.故障恢复

#主节点
rm -rf /var/run/redis_6379.pid  #删除pid文件如果pid文件不删除则服务起不来
/etc/init.d/redis_6379 start  #启动服务
netstat -natp |grep 6379  
#主服务器查看
redis-cli info replication

 

三、Redis 群集模式 

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

3.1.集群的作用,可以归纳为两点


3.1.1.数据分区

数据分区(或称数据分片)是集群最核心的功能。

集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

3.1.2.高可用

集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

3.2.Redis集群的数据分片

Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每个节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

以3个节点组成的集群为例

  • 节点A包含0到5460号哈希槽

  • 节点B包含5461到10922号哈希槽

  • 节点c包含10923到16383号哈希槽

3.3.搭建Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在6台服务器上模拟:

以IP及端口号进行区分:3个主节点端口号:7001、7003、7005,对应的从节点端口号:7002、7004、7006。

服务器类型系统和IP地址需要安装的组件
master1192.168.52.140redis-5.0.7.tar.gz
master2192.168.52.130redis-5.0.7.tar.gz
master3192.168.52.120redis-5.0.7.tar.gz
slave1192.168.52.110redis-5.0.7.tar.gz
slave2192.168.52.100redis-5.0.7.tar.gz
slave3192.168.52.200redis-5.0.7.tar.gz

3.3.1.初始化环境每台主机安装redis

关闭防火墙
systemctl stop firewalld
setenforce 0
#安装依赖环境
yum install -y gcc gcc-c++ make
 
#解压文件到指定文件夹 opt
tar zxvf redis-5.0.7.tar.gz -C /opt/
cd /opt/redis-5.0.7/
#安装
make
make PREFIX=/usr/local/redis install
#执行软件包提供的install_server.sh 脚本文件,设置Redis服务所需要的相关配置文件
cd /opt/redis-5.0.7/utils
./install_server.sh
……
慢慢回车
Please select the redis executable path []
手动输入
/usr/local/redis/bin/redis-server
 
#创建软链接
ln -s /usr/local/redis/bin/* /usr/local/bin/
 
/etc/init.d/redis_6379 stop				#停止
/etc/init.d/redis_6379 start			#启动
/etc/init.d/redis_6379 restart			#重启
/etc/init.d/redis_6379 status	
			
#重启redis服务
/etc/init.d/redis_6379 restart

3.2开启集群功能

修改任意一台服务器配置文件

vim /opt/redis-5.0.7/redis.conf
 
bind 192.168.52.140                       #69行,注释掉bind项,改为自己
protected-mode no                         #88行,修改,关闭保护模式
port 6379                                 #92行redis默认监听端口,
daemonize yes                             #136行,开启守护进程,以独立进程启动
appendonly yes                            #700行,修改,开启AOF持久化
cluster-enabled yes                       #832行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf       #840行,取消注释,群集名称文件设置
cluster-node-timeout 15000                #846行,取消注释群集超时时间设置
 
#远程传输完要修改监听地址为自己
scp /opt/redis-5.0.7/redis.conf 192.168.52.130:/opt/redis-5.0.7/
scp /opt/redis-5.0.7/redis.conf 192.168.52.120:/opt/redis-5.0.7/
scp /opt/redis-5.0.7/redis.conf 192.168.52.110:/opt/redis-5.0.7/
scp /opt/redis-5.0.7/redis.conf 192.168.52.100:/opt/redis-5.0.7/
scp /opt/redis-5.0.7/redis.conf 192.168.52.200:/opt/redis-5.0.7/

 

 

修改其他节点给服务器配置文件监控地址 

  

 3.3.启动redis节点

所有节点执行

cd /opt/redis-5.0.7/
redis-server redis.conf   #启动redis节点

 3.4.启动集群

任一一个节点启动

redis-cli --cluster create 192.168.52.140:6379 192.168.52.130:6379 192.168.52.120:6379 192.168.52.110:6379 192.168.52.100:6379 192.168.52.200:6379 --cluster-replicas 1
#六个示例分为三组,每组一主一从,前面的做主节点后面的做从节点下面交互的时候需要输入yes才可以创建 --replicas 1表示每个主节点有一个从节点

3.5测试群集 

redis-cli -h 192.168.52.140 -p 6379 -c           #加-c参数,节点之间可以互相跳转
192.168.239.10:6379> cluster slots               #查看节点哈希槽编号范围
1) 1) (integer) 5461
   2) (integer) 10922                            #哈希槽编号范围
   3) 1) "192.168.52.140"  
      2) (integer) 6379                          #主节点ip和端口
      3) "093fd0ff72272a5b3c91b01fbcc106184971b818"
   4) 1) "192.168.52.100" 
      2) (integer) 6379                          #从节点ip和端口
      3) "97b3832b9be3df6455f3ba34269a92ee07bd46e3"
2) 1) (integer) 0
   2) (integer) 5460
   3) 1) "192.168.52.130"
      2) (integer) 6379
      3) "03523dfb1c9efd1da17f9380e94276c171ef2041"
   4) 1) "192.168.52.110"
      2) (integer) 6379
      3) "33bb54b95acfcb61960317f3eaaf19f74fd5cafa"
3) 1) (integer) 10923
   2) (integer) 16383
   3) 1) "192.168.52.120"
      2) (integer) 6379
      3) "a0515c00438a99c928e16bd0ec704013e74cc2e7"
   4) 1) "192.168.52.200"
      2) (integer) 6379
      3) "efbb3e371167be32d67462e496ba538ee94fad07"

四、总结 

4.1.主从复制总结

redis主从复制 是为了数据冗余和读写分离

在这两种模式中,有两种角色主节点(master)和从节点(slave),主节点负责处理写的操作,并将数据更改复制到一个或多个从节点。
这样我们的主节点负载减轻,从节点可以提供数据读取服务,实现读写分离,如果主节点停止服务,从节点之一可以立即接管主节点的角色,再继续提供服务


具体流程如下:
1、从节点启动成功连接主节点后,发送一个sync命令

2、主节点接受到sync的命令后开始在后台保存快照,同时,它也开始记录接收到rsnc后所有执行写的命令,快照完成后会将这个快照文件发送给从节点。

3、从节点收到快照文件之后开始载入,并持续接受主节点发送过来的新的写命令执行

总的来说 通过主从复制,redis 能够实现数据的备份(master 产生的数据能slave备份),负责均衡(读操作可以分摊到slave上去)和高可用(master宕机后,可以由slave进行故障切换)

4.2.哨兵机制

哨兵是一个高可用的行解决方案 官方认可 默认模式

1、监控:redis 哨兵 会持续监控master和slave实例是否正常运行

2、通知:如某个redis实例有问题,哨兵可以通过API向管理员或者其他应用发信通知

3、自动故障转移:如果master节点不工作,哨兵会开始故障转移的过程,选择一个slave节点晋升为新的master,其他剩余slave的节点会被重新配置为信的master节点的slave

4、配置提供服务:客户端可以使用哨兵来查询被认证的master节点该master节点的目录所有的slave节点


redis 哨兵是一个用于管理多个reids服务的系统,它提供监控、通知、自动故障转移、配置提供服务的功能,以实现redis高可用性
 

4.3.redis cluster 集群

redis cluster 是一个分布式数据库解决方案,提供一组redis服务之间的网络接口

主要有几个功能:
1、数据分片:redis cluster 实现了就爱那个数据自动分片,每个节点都会保存一份数据

2、故障转移:若个某个节点发生故障,cluster会自动将其上的分片迁移个其他节点

3、高性能:由于数据分片和网络,redis cluster提供高性能的数据操作

4、高可能:如果单个节点挂掉了,那么redis cluster 内部会自动进行故障恢复


redis 集群 是一个提供高性能、高可用、数据分片、故障转移特性的分布式数据解决方案

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/521267.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

机器学习笔记 - 文字转语音技术路线简述以及相关工具不完全清单

一、TTS技术简述 今天的文本到语音转换技术(TTS)的目标已经不仅仅是让机器说话,而是让它们听起来像不同年龄和性别的人类。通常,TTS 系统合成器的质量是从不同方面进行评估的,包括合成语音的清晰度、自然度和偏好,以及人类感知因素,例如可理解性。 1、技术路线 (1)基…

Matlab:任意的三维Cubic空间中生成大小不一样的小球,并画出截面

生成小球和大球的代码块 clear all clc close all % entorid3D rand(10,3, 0.1,0.9);% for c11 0.05:0.3:0.95 % for c12 0.05:0.3:0.95 % for c13 0.05:0.3:0.95 % [x1,y1,z1] ellipsoid(c11, c12, c13, 0.05, 0.05, 0.05,100); % …

leetcode 13. 罗马数字转整数

代码&#xff1a; class Solution(object):def romanToInt(self, s):""":type s: str:rtype: int"""dict1 {I:1,V:5,X:10,L:50,C:100,D:500,M:1000}nums 0t len(s)i 0while i<t :if s[i]I:if i1 t:numsdict1.get(s[i])i1else:if s[i1] V…

深入浅出 -- 系统架构之负载均衡Nginx资源压缩

一、Nginx资源压缩 建立在动静分离的基础之上&#xff0c;如果一个静态资源的Size越小&#xff0c;那么自然传输速度会更快&#xff0c;同时也会更节省带宽&#xff0c;因此我们在部署项目时&#xff0c;也可以通过Nginx对于静态资源实现压缩传输&#xff0c;一方面可以节省带宽…

SystemC入门之测试平台编写完整示例:带同步输出的多路选择器

内容&#xff1a;SystemC入门书中的简单测试平台编写示例。 模块文件编写 带锁存输出的4选1多路器模型。输出在信号clock的正跳变沿时刻被锁存。 sync_mux41.h文件 #include <systemc.h>SC_MODULE(sync_mux41) {sc_in<bool> clock, reset;sc_in<sc_uint<…

基于沙漏 Tokenizer 的高效三维人体姿态估计框架HoT

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 摘要Abstract文献阅读&#xff1a;基于沙漏 Tokenizer 的高效三维人体姿态估计框架HoT1、研究背景2、提出方法3、模块详细3.1、什么是HoT3.2、HoT 框架3.3、Token 剪…

IDEA/PyCharm/GoLand同时打开2个分支

背景 想对比2个分支的代码&#xff0c;或者在A分支开发时&#xff0c;需要看B分支&#xff0c;切来切去太麻烦&#xff0c;而且新写的代码还没法直接切到B分支。 操作方法 假如有A、B 2个分支。 通过git worktree为B分支新建1个worktree&#xff0c;然后通过打开新项目的方式…

Mac资源库的东西可以删除吗?mac资源库在哪里打开 cleanmymacx是什么 cleanmymac免费下载

在使用Mac电脑的过程中&#xff0c;用户可能会遇到存储空间不足的问题。一种解决方法是清理不必要的文件&#xff0c;其中资源库&#xff08;Library&#xff09;文件夹是一个常被提及但又让人迷惑的目标。Mac资源库的东西可以删除吗&#xff1f;本文旨在解释Mac资源库的作用、…

JDK安全剖析之安全处理入门

0.前言 Java 安全包括大量 API、工具以及常用安全算法、机制和协议的实现。Java 安全 API 涵盖了广泛的领域&#xff0c;包括加密、公钥基础设施、安全通信、身份验证和访问控制。Java 安全技术为开发人员提供了编写应用程序的全面安全框架&#xff0c;还为用户或管理员提供了…

DeepSort行人车辆识别系统(实现目标检测+跟踪+统计)

文章目录 1、前言2、源项目实现功能3、运行环境4、如何运行5、运行结果6、遇到问题7、使用框架8、目标检测系列文章 1、前言 1、本文基于YOLOv5DeepSort的行人车辆的检测&#xff0c;跟踪和计数。 2、该项目是基于github的黄老师傅&#xff0c;黄老师傅的项目输入视频后&#x…

Django之五种中间件定义类型—process_request、process_view、process_response.......

目录 1. 前言 2. 基础中间件 3. 如何自定义中间件 4. 五种自定义中间件类型 4.1 process_request 4.2 process_view 4.3 process_response 4.4 process_exception 4.5 process_template_response 5. 最后 1. 前言 哈喽&#xff0c;大家好&#xff0c;我是小K,今天咋们…

计算机网络 实验指导 实验12

路由信息协议&#xff08;RIP&#xff09;实验 1.实验拓扑图 名称接口IP地址网关Switch AF0/1192.168.1.1/24F0/2172.1.1.1/24Switch BF0/1192.168.1.2/24F0/2172.2.2.1/24PC1172.1.1.2/24172.1.1.1PC2172.1.1.3/24172.1.1.1PC3172.2.2.2/24172.2.2.1PC4172.2.2.3/24172.2.2.1…

FPGA笔试面试题目记录

1 logic utilization 题目&#xff1a;Rank the following operations from lowest utilization to highest. Assume that all variables are 32-bit integers,that the operations are implemented using LUTs ony and that the synthesiser will produce an optimal digital…

【微信小程序】【小程序样式加载不出来】

微信小程序配置sass 第一步&#xff1a;找配置文件 在项目中找到 project.config.json文件&#xff0c;在setting属性中添加 useCompilerPlugins属性&#xff0c;值为sass即可&#xff0c;若是 less,将数组里面的值改为less即可 "useCompilerPlugins": ["sas…

Flutter 解决NestedScrollView与TabBar双列表滚动位置同步问题

文章目录 前言一、需要实现的效果如下二、flutter实现代码如下&#xff1a;总结 前言 最近写flutter项目&#xff0c;遇到NestedScrollView与TabBar双列表滚动位置同步问题&#xff0c;下面是解决方案&#xff0c;希望帮助到大家。 一、需要实现的效果如下 1、UI图&#xff1…

Quantinuum与微软携手突破:开创容错量子计算新纪元

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

高精度端到端在线校准环视相机和LIDAR(精度0.2度内!无需训练数据)

高精度端到端在线校准环视相机和LIDAR&#xff08;精度0.2度内&#xff01;无需训练数据&#xff09; 附赠自动驾驶学习资料和量产经验&#xff1a;链接 写在前面 在自动驾驶车辆的使用寿命内&#xff0c;传感器外参校准会因振动、温度和碰撞等环境因素而发生变化。即使是看似…

闪站侠洗护管理系统,洗衣洗鞋小程序软件定制,干洗连锁店软件系统搭建;

闪站侠洗护管理系统&#xff0c;洗衣洗鞋小程序软件定制&#xff0c;干洗连锁店软件系统搭建&#xff1b; 为了让每一个洗衣洗鞋工厂与门店的连接更加高效便捷&#xff0c;送洗流程更加简单轻松&#xff0c;拽牛科技倾心打造洗衣洗鞋管理软件。我们的目标是通过高效和优质的服务…

Rust vs C++:2024,谁更懂错误处理?

讲动人的故事,写懂人的代码 「席双嘉,听说你的C++项目又因为忘了检查返回值导致内存泄漏,又加班了?」 周五中午,在国内某科技巨头熙熙攘攘的员工餐厅,贾克强半开玩笑地戳了戳坐在隔壁的席双嘉,眼神中满是戏谑。 贾克强,一个热衷于Rust的程序员,总是乐于挑战和探索新…

域名应该如何实名?域名应该如何备案?域名如何解析到服务器

大家好欢迎来到易极赞&#xff0c;今天我们来跟大家聊一下“域名应该如何实名以及备案”这个话题。 域名实名认证是验证域名所有者身份的过程&#xff0c;以确保域名的合法性&#xff0c;通常需要登录到域名服务商后台&#xff0c;进行域名的注册&#xff0c;注册后创建域名模…