网络网络层之(3)IPv6地址

网络网络层之(3)IPv6协议


Author: Once Day Date: 2024年4月2日

一位热衷于Linux学习和开发的菜鸟,试图谱写一场冒险之旅,也许终点只是一场白日梦…

漫漫长路,有人对你微笑过嘛…

全系列文档可参考专栏:通信网络技术_Once-Day的博客-CSDN博客。

参考文章:

  • 《TCP/IP详解卷一》
  • IEEE RA Guidelines for Use of EUI, OUI, and CID
  • IPv6本地链路地址生成方式_ipv6_addr_gen_mode-CSDN博客
  • RFC 2373: IP Version 6 Addressing Architecture (rfc-editor.org)
  • RFC 2464: Transmission of IPv6 Packets over Ethernet Networks (rfc-editor.org)
  • RFC 4291: IP Version 6 Addressing Architecture (rfc-editor.org)

文章目录

  • 网络网络层之(3)IPv6协议
        • 1. 概述
          • 1.1 基础信息
          • 1.2 IPv6地址简化表示方法
        • 2. IPv6地址
          • 2.1 IPv6地址构成
          • 2.2 IPv6本地链路地址
        • 3. IPv4和IPv6地址转换
          • 3.1 单播地址转换
        • 4. IPv6组播地址
          • 4.1 组播地址格式
          • 4.1 特殊组播地址

1. 概述
1.1 基础信息

IPv6地址是互联网协议第六版(Internet Protocol Version 6)的一部分,它是为了解决IPv4地址耗尽问题而设计的新一代互联网地址协议。

IPv6地址使用128位地址长度,相较于IPv4的32位,大幅增加了地址空间,可以为地球上几乎每一粒沙子分配一个唯一的网络地址。

它通常使用十六进制表示,并且通过冒号(:)分隔成8组,每组4个十六进制数。例如,一个IPv6地址可能看起来像这样:2001:0db8:85a3:0000:0000:8a2e:0370:7334

IPv6很多地方规则与IPv4一致,因此本文不再描述那些与IPv4一样的内容,而是谈谈IPv6比较独特的地方。

1.2 IPv6地址简化表示方法

IPv6地址由于其128位的长度,以标准方式表示时非常长,因此在实际使用中,人们通常会采用简化表示法来减少地址的复杂性。IPv6地址简化的基本规则包括以下方面[RFC4291]:

  1. 省略前导零:在IPv6地址的每个16位字段中,可以省略字段起始部分的所有零。例如,“0042"可以简化为"42”,“0A00"可以简化为"A00”。

  2. 双冒号缩写:在IPv6地址中,一连串的零可以被替换为"::“(双冒号)。这个简化规则只能使用一次,因为多次使用会造成地址不明确。例如,2001:0db8:0000:0000:0000:0000:1428:57ab可以被简化为2001:0db8::1428:57ab。如果地址中有多个零段,通常会将最长的连续零段替换为”::"以进行最大程度的简化。

  3. 在IPv6格式中嵌入IPv4地址可以采用混合符号形式,紧接着IPv4部分的地址块的值为ffff,地址其与部分使用点分四组格式。如::ffff:10.0.0.1表示由IPv4地址(10.0.0.1)映射的IPv6地址。

  4. IPv6地址的低32位通常采用点分四组表示法,例如::0102:f001可以表示为::1.2.240.1,称为IPv4兼容的IPv6地址。

例如,完整的IPv6地址2001:0db8:0000:0000:0000:0000:0000:0001可以被简化为2001:0db8::1

需要注意的是,"::"不能用于省略单个零段,因为这会导致地址的歧义。

[RFC5952]制定了一些规则,以缩小选择范围,减少不必要的混淆。

  1. 前导的零必须被压缩,例如2001::0001变成2001::1
  2. ::用于影响最大的地方,以压缩最多的零,如果多个块中包含等长度的零,顺序靠前的块将被替换为::
  3. a到f的十六进制数字应该使用小写表示。

在URL等场景下,IPv6的冒号会和端口号冲突,因此需要使用括号包围IPv6地址,如下表示:

https://[2001:6666]:443
2. IPv6地址
2.1 IPv6地址构成

IPv6地址比IPv4长了四倍,因此能表示的地址数目范围非常大,也没有像IPv4一样分为A/B/C/D类地址。

IPv6吸取了IPv4子网划分的优点,直接一步到位,使用CIDR表示,通过前缀表示法,来划分许多特殊地址范围,如fe80::/10范围内的地址全都是本地链路地址,不能用于公共互联网。

IPv6也没有广播地址,因此不用像IPv4一样去区分子网号和主机号,直接根据地址范围划分作用。

常见IPv6地址范围划分如下:

前缀描述
::/0默认路由条目,不用于寻址。
::/128未指定地址 (Unspecified Address),可用于源IP地址。
::1/128环回地址 (Loopback Address),类似于IPv4中的127.0.0.1。
fc00::/7唯一本地地址 (Unique Local Address, ULA),不用于公共互联网。
fe80::/10链路本地地址 (Link-Local Address),只在单个链路上有效,不会被路由器转发到其他链路。
ff00::/8多(组)播地址 (Multicast Address),仅作为目的IP地址使用。
::ffff:0:0/96IPv4映射地址 (IPv4-mapped IPv6 Address),只用于内部主机。
64:ff9b::/96IPv4-IPv6转换地址 (IPv4-IPv6 Translation Address),用于自动IPv4/IPv6转换机制(如NAT64)。

通常一个网络接口上会有多个IPv6地址(本地链路地址+全球单播地址+组播地址等等),而IPv4一般只有一个地址。

2.2 IPv6本地链路地址

链路本地IPv6地址使用接口标识符(IID)作为组成之一,通常直接由接口的链路层MAC地址形成,如下:

在这里插入图片描述

在IEEE标准中,EUI表示扩展唯一标识符,分成EUI-64和EUI-48版本。以太网中常用的是EUI-48的短格式版本,两者区别是其长度不一样。

EUI-48也就是常说的MAC地址,其第一个字节最低倒数第二位(U/G)表示该MAC地址是全局MAC地址还是本地MAC地址。

EUI-48通过在第三个字节和第四个字节中插入两个字节(0xFFFE)可以转化成EUI-64地址,再取反(U/G)位,便可以用于链路本地IPv6地址的接口标识符组成。反转目的是将原来的全局MAC地址变成本地MAC地址,正好对应链路本地IPv6地址含义

例如,接口MAC地址是00:11:22:33:44:55,那么其IPv6链路本地地址是fe80::0211:22ff:fe33:4455

下面是Linux设备上的IPv6链路本地地址实例:

ubuntu->~:$ ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 10.0.4.17  netmask 255.255.252.0  broadcast 10.0.7.255
        inet6 fe80::5054:ff:fe85:f022  prefixlen 64  scopeid 0x20<link>
        ether 52:54:00:85:f0:22  txqueuelen 1000  (Ethernet)
        RX packets 52199351  bytes 16755548321 (16.7 GB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 47234618  bytes 12477606055 (12.4 GB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

Mac地址是52:54:00:85:f0:22,有0x52=b'01010010,这是一个本地MAC地址,取反之后,即52:54:00:85:f0:22

然后添加0xFFFE,便构造出实际的链路本地IPv6地址fe80::5054:ff:fe85:f022

对于其他链路层或者IP隧道协议,会使用各自独特的标识符来创建,例如隧道IP地址。

注意,这里细心的人也许发现了,52:54:00:85:f0:22是个本地MAC地址,反转之后不就变成了全局MAC地址呢?

确实如此,这是实践带来的问题,上述设备是qemu虚拟设备,因此使用了本地MAC地址。在[RFC 4291]中,明确表示EUI-64地址反转U/G位后,其含义仅供参考,不强行要求对应本地链路含义。

简单来说,修改后的EUI-64地址能对应上“链路本地”含义最好,不能对应也不算是错误,只是一串描述符而已

3. IPv4和IPv6地址转换
3.1 单播地址转换

在一些IPv6和IPv4过渡的网络中,需要在IPv4和IPv6之间进行转换,相关内容可以参考[RFC6144]和[RFC6052]。

该方案使用一种特殊地址格式,称为嵌入IPv4的IPv6地址,可采用如下的六种格式来进行编码:

在这里插入图片描述

其中64:ff9b::/96是一个非常有名的转换前缀,正好对应这里面的/96情况。除了知名前缀之外,也可以是组织为转换器分配的唯一前缀。标识对应的8位必须全为0,以保持与[RFC4291]指定标识符的兼容性,后缀位被保留,并且也应该设置为0

4. IPv6组播地址
4.1 组播地址格式

IPv6中,前缀ff00::/8已被预留给组播地址,其中后面的112位可用于保存组号,如下所示。

在这里插入图片描述

基本的IPv6组播格式包含4个标志位:

  • 0,保留位。
  • R,包含会合点。
  • P,使用单播前缀。
  • T,临时的地址。

4位的范围值用于表示组播的范围(全球/本地等),如下所示:

范围值描述
0/3/4/6/7/9-d/f保留和未分配的值
1接口和机器本地
2链路和子网本地
5站点本地
8组织本地
e全球

例如,对于IANA分配的NTP服务协议组播地址,可以跨越多个地址范围,即可变范围的组播地址ff0x::101,如下所示:

地址描述
ff01::101同一机器中的所有NTP服务器
ff02::101同一链路/子网中的所有NTP服务器
ff04::101某些管理定义范围内的所有NTP服务器
ff05::101同一站点中的所有NTP服务器
ff08::101同一组织中的所有NTP服务器
ff0e::101Internet中的所有NTP服务器

标志位(P/R/T)含义如下:

位字段(标志)描述
R会合点标志(0-常规的,1-包括RP地址)
P前缀标志(0-常规的,1-基于单播前缀的地址)
T临时标志(0-永久分配的,1-临时的)

当P位设置为1时,无须基于每个组的全球性许可,可以采用以下两个方法确定地址:

  • 基于单播前缀的IPv6组播地址分配,提前拿到一个分配的单播前缀,然后同时分配一个有效的组播地址集合。
  • 链路范围的IPv6组播,使用接口标识符,组播地址基于主机的IID标识。

P位设置为1通常也要求T位也为1,上述两种组播地址格式如下所示:

在这里插入图片描述

例如,一个组织分配了一个单播前缀3ffe:ffff:1::/48,同时也会分配一个基于单播的组播前缀ff3x:30:3ffe:ffff:1::/96

  • x表示组播范围可以由该组织自行选择,例如链路本地(2)和组织本地(8)。
  • 3表明P和T位同时设置,这个地址是基于单播前缀的IPv6组播地址分配,并且是动态的。
  • 30是指单播地址前缀长度为48,然后后面接着单播前缀3ffe:ffff:1

在创建唯一的链路本地范围的组播地址,可以使用接口标识符IID构建组播地址,前缀长度需要固定为255,范围只能为接口本地和链路本地。

当R和P字段设置为1时,表示组播路由协议需要知道一个会合点(RP),即可以处理一个或者多个组播组的组播路由器的IP地址。其格式如下:

在这里插入图片描述

RIID字段值是RP的IP地址的低4位,其余部分用零填充。

例如,对于组播地址ff75:940:2001:db8:dead:beef:f00d:face,其范围为5(站点本地),RIID值为9,前缀长度为64(0x40),所以单播前缀为2001:db8:dead:beef/64,RP地址则为2001:db8:dead:beef::9

4.1 特殊组播地址

这些地址用于IPv6协议的不同方面,包括路由协议、网络管理以及特定的网络服务。例如,ff02::1地址用于标识同一链路上的所有节点,而ff02::2用于标识同一链路上的所有路由器。Solicited-Node地址有助于IPv6邻居发现过程,它是通过在IPv6地址的最后24位前添加ff02::1:ff前缀来构造的。

组播地址范围描述
ff01::1节点所有节点
ff01::2节点所有路由器
ff01::fb节点mDNSv6
ff02::1链路所有节点
ff02::2链路所有路由器
ff02::4链路DVMRP路由器
ff02::5链路OSPFIGP
ff02::6链路基于OSPFIGP设计的路由器
ff02::9链路RIPng路由器
ff02::a链路EIGRP路由器
ff02::d链路PIM路由器
ff02::16链路支持MLDv2的路由器
ff02::6a链路所有探测器
ff02::6d链路LL-MANET路由器
ff02::fb链路mDNSv6
ff02::1:2链路所有DHCP代理
ff02::1:3链路LLMNR
ff02::1:ffxx:xxxx链路请求节点地址范围
ff05::2站点站点本地作用域的所有路由器
ff05::fb站点mDNSv6
ff05::1:3站点所有DHCP服务器
ff0x::可变的保留
ff0x::fb可变的mDNSv6
ff0x::101可变的NTP
ff0x::133可变的聚合服务器访问协议
ff0x::18c可变的所有AC的地址
ff3x::/32(特殊范围)SSM块






Alt

Once Day

也信美人终作土,不堪幽梦太匆匆......

如果这篇文章为您带来了帮助或启发,不妨点个赞👍和关注,再加上一个小小的收藏⭐!

(。◕‿◕。)感谢您的阅读与支持~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/520472.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

简化备案域名查询的最新API接口

随着互联网的发展&#xff0c;越来越多的网站和域名被注册和备案。备案域名查询是一个非常重要的功能&#xff0c;可以帮助用户在特定时间段内查询已备案的域名信息。现在&#xff0c;我将介绍一个简化备案域名查询的最新API接口&#xff0c;该接口可以帮助用户快速查询备案域名…

SQL 注入神器:jSQL Injection 保姆级教程

一、介绍 jSQL Injection是一种用于检测和利用SQL注入漏洞的工具&#xff0c;它专门针对Java应用程序进行SQL注入攻击。以下是关于jSQL Injection的一些介绍&#xff1a; 功能特点&#xff1a; 自动化扫描&#xff1a; jSQL Injection具有自动化扫描功能&#xff0c;能够检测J…

Cesium入门路上的问题解决和知识点集合

想要进行cesium事件处理&#xff0c;必然会涉及到Cesium.ScreenSpaceEventHandler(viewer.scene.canvas)但是与js不同&#xff0c;viewer的位置要先于viewer调用代码大小写错了&#xff0c;就会找不到构造的东西​ 练习时这个方法无效主要是setInputAction方法的括号位置错误应…

精品推荐-2024护网HVV实战教程资料合集(共20章)

以下是资料目录&#xff0c;如需下载&#xff0c;请前往星球获取&#xff1a;https://t.zsxq.com/19vwYrf4t 精品推荐&#xff0c;2024护网HVV实战教程资料合集&#xff0c;压缩包内涵大量实战资料&#xff0c;共20章。星球内会持续更新教程包。 01-HW介绍.zip 02-HTTP&Bu…

揭秘微信如何设置自动回复

01 自动通过好友后自动回复设置 02 个人聊天的关键字自动回复设置 不仅如此&#xff0c;在微信私域管理系统上还可以进行批量多个号自动添加好友、批量群发、定时发朋友圈等操作&#xff0c;可以大幅度提升工作效率&#xff0c;将繁琐的任务交给系统来完成&#xff0c;从而节省…

【【萌新的Pytorch入门之Python的学习】】

学习记录 - 参考记录来自B站up主 -爆肝杰哥 ① NumPy 包为 Python 加上了关键的数组变量类型&#xff0c;弥补了 Python 的不足&#xff1b; ② Pandas 包在 NumPy 数组的基础上添加了与 Excel 类似的行列标签&#xff1b; ③ Matplotlib 库借鉴 Matlab&#xff0c;帮 Python 具…

论文《Structural Information Enhanced Graph Representation for Link Prediction》阅读

论文《Structural Information Enhanced Graph Representation for Link Prediction》阅读 论文概况Introduction问题一&#xff1a;**现有的节点标记技巧只能帮助感知路径深度&#xff0c;而缺乏对路径“宽度”的感知&#xff0c;例如节点度或路径数量**。问题二&#xff1a;G…

软考117-上午题-【计算机网络】-杂题+小结

一、杂题 真题1&#xff1a; 真题2&#xff1a; 真题3&#xff1a; 真题4&#xff1a; 真题5&#xff1a; 真题6&#xff1a; 真题7&#xff1a; 真题8&#xff1a; 真题9&#xff1a; 真题10&#xff1a; 真题11&#xff1a; 真题12&#xff1a; 真题13&#xff1a; 真题14&a…

【算法集训】基础算法:二分查找 | 概念篇

二分枚举&#xff0c;也叫二分查找&#xff0c;指的就是给定一个区间&#xff0c;每次选择区间的中点&#xff0c;并且判断区间中点是否满足某个条件&#xff0c;从而选择左区间继续求解还是右区间继续求解&#xff0c;直到区间长度不能再切分为止。 由于每次都是把区间折半&am…

AUTOSAR MCAL for SemiDrive E3 功能模块使用介绍:I2C

一、 概述 本文主要介绍如何使用芯驰提供的 AUTOSAR MCAL 软件包&#xff0c;开发 SemiDrive E3 的 I2C 模块&#xff0c;对 RTC 芯片进行读写操作。 硬件使用 E3640 GATEWAY 开发板&#xff0c;软件包为 mcal3.1。 图1 硬件环境 二、模块简介 E3 系列最多支持 8 个 I2C&am…

【51单片机入门记录】A/D D/A转换器概述

目录 一、A/D D/A转换器简介 &#xff08;1&#xff09;模数转换器-ADC &#xff08;analogue-to-digital conversion&#xff09; &#xff08;2&#xff09;数模转换器-DAC&#xff08;digital-to-analogue conversion&#xff09; &#xff08;3&#xff09;应用场景 二…

全国计算机等级考试三级Linux应用与开发技术考试-习题汇总

https://blog.csdn.net/qq_42025798/article/details/119155696 3.第1章-计算机体系结构与操作系统-练习题-简答题 https://blog.csdn.net/qq_42025798/article/details/119186151 4.第1章-计算机体系结构与操作系统-练习题-填空题 https://blog.csdn.net/qq_42025798/article/…

gulp项目配置,压缩css,压缩js,进行监听文件改动

1&#xff0c;创建项目 npm install -g gulp这个应该很熟悉&#xff0c;就是全局安装gulp 2&#xff0c;创建一个工程&#xff0c;使用node创建&#xff0c;统一命令 npm init -y3,创建后&#xff0c;目录出现一个package.json文件&#xff0c;没错&#xff0c;就是我们用vu…

【Leetcode每日一题】模拟 - 外观数列(难度⭐⭐)(51)

1. 题目解析 题目链接&#xff1a;38. 外观数列 这个问题的理解其实相当简单&#xff0c;只需看一下示例&#xff0c;基本就能明白其含义了。 2.算法原理 所谓“外观数列”&#xff0c;其实只是依次统计字符串中连续且相同的字符的个数。依照题意&#xff0c;依次模拟即 可。…

Java面向对象进阶基础知识

面向对象进阶 static 静态变量 被该类的所有的对象共享 不属于对象,属于类 随着类的加载而加载,优先于对象存在 类名调用(推荐) 对象名调用 static的注意事项 静态方法中没有this关键字 静态方法,只能访问静态 非静态方法可以访问所有 在Java中&#xff0c;static关…

元宇宙虚拟空间的碰撞体检测(四)

前言 该文章主要讲元宇宙虚拟空间的碰撞体检测&#xff0c;基本技术点&#xff0c;不多说&#xff0c;直接引入正题。 碰撞体检测 这里可以看到检测代码的逻辑是经过一系列判断&#xff0c;最后判断模型类型属性如果是trimesh&#xff0c;那么通过解析出来的顶点来生成我们的…

Linux:IO多路转接之select

文章目录 selecttimeval结构体fd_set 优缺点分析完整代码 本节要介绍的主题是多路转接式IO select 先说结论&#xff0c;这个select是做什么的呢&#xff1f; select是负责在Linux系统中&#xff0c;让一个人可以有多个鱼竿&#xff0c;可以不停的进行轮询&#xff0c;只要有…

【C语言基础】:文件操作详解(前篇:准备知识)

文章目录 一、什么是文件以及文件的分类1.1 程序文件1.2 数据文件1.3 文件名 二、文本文件和二进制文件2.1 数据在文件中的存储 三、文件的打开和关闭3.1 流和标准流3.1.1 流3.1.2 标准流 3.3 文件指针3.5 文件的打开和关闭 一、什么是文件以及文件的分类 文件是指存储在计算机…

【SCI绘图】【曲线图系列1 python】绘制扫描点平滑曲线图

SCI&#xff0c;CCF&#xff0c;EI及核心期刊绘图宝典&#xff0c;爆款持续更新&#xff0c;助力科研&#xff01; 本期分享&#xff1a; 【SCI绘图】【曲线图1 python】绘制扫描点平滑曲线图 1.环境准备 python 3 import numpy as np import pandas as pd import proplot …