非关系型数据库(缓存数据库)redis的性能管理

目录

一.Redis性能管理

1.Info Memory——查看Redis内存使用

 2.内存碎片率

3. 内存使用率

4.内存回收key

二.缓存的穿透,击穿和雪崩

1.缓存的穿透

 1.1 问题描述

1.2 缓存穿透发生的条件 

1.3 缓存穿透发生的原因 

1.4 解决方案 

2 缓存的击穿 

2.1 问题描述 

2.2 缓存击穿的现象 

2.3 解决方案 

3 缓存雪崩 

3.1 问题描述

3.2 解决方案 

三.总结 


一.Redis性能管理

1.Info Memory——查看Redis内存使用

 2.内存碎片率

  • 操作系统分配的内存值 used_memory_rss 除以 Redis 使用的内存总量值 used_memory 计算得出。
  • 内存值 used_memory_rss 表示该进程所占物理内存的大小,即为操作系统分配给 Redis 实例的内存大小。
  • 除了用户定义的数据和内部开销以外,used_memory_rss 指标还包含了内存碎片的开销, 内存碎片是由操作系统低效的分配/回收物理内存导致的(不连续的物理内存分配)。

举例来说:Redis 需要分配连续内存块来存储 1G 的数据集。如果物理内存上没有超过 1G 的连续内存块, 那操作系统就不得不使用多个不连续的小内存块来分配并存储这 1G 数据,该操作就会导致内存碎片的产生 

跟踪内存碎片率对理解Redis实例的资源性能是非常重要的。

●内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。

●内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。需要在redis-cli工具上输入shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,再重启服务器。

●内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis 内存占用。

3. 内存使用率

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

避免内存交换发生的方法

  • 针对缓存数据大小选择安装 Redis 实例
  • 尽可能的使用Hash数据结构存储
  • 设置key的过期时间

4.内存回收key

内存清理策略,保证合理分配redis有限的内存资源。

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改 maxmemory-policy 属性值:

vim /etc/redis/6379.conf
 
sed -n '598p' /etc/redis/6379.conf
maxmemory-policy noenviction
  • volatile-lru:使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,针对设置了TTL的key)
  • volatile-ttl:从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
  • volatile-random:从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)
  • allkeys-lru:使用LRU算法从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
  • allkeys-random:从数据集合中任意选择数据淘汰(随机移除key)
  • noenviction:禁止淘汰数据(不删除直到写满时报错)

二.缓存的穿透,击穿和雪崩

1.缓存的穿透

 1.1 问题描述

key 对应的数据在数据源并不存在,每次针对此 key 的请求从缓存获取不到,请求都会压到数据源(数据库),从而可能压垮数据源。比如用一个不存在的用户 id 获取用户信息,不论缓存还是数据库都没有,若黑客利用此漏洞进行攻击可能压垮数据库。

1.2 缓存穿透发生的条件 
  • 应用服务器压力变大
  • redis 命中率降低
  • 一直查询数据库,使得数据库压力太大而压垮
1.3 缓存穿透发生的原因 

黑客或者其他非正常用户频繁进行很多非正常的 url 访问,使得 redis 查询不到数据库。 

1.4 解决方案 

①对空值缓存

  • 如果一个查询返回的数据为空(不管是数据是否不存在),我们仍然把这个空结果(null)进行缓存,设置空结果的过期时间会很短,最长不超过五分钟。

②设置可访问的名单(白名单)

  • 使用 bitmaps 类型定义一个可以访问的名单,名单 id 作为 bitmaps 的偏移量,每次访问和 bitmap 里面的 id 进行比较,如果访问 id 不在 bitmaps 里面,进行拦截,不允许访问。

③采用布隆过滤器

  • 布隆过滤器(Bloom Filter)是 1970 年由布隆提出的。它实际上是一个很长的二进制向量 (位图) 和一系列随机映射函数(哈希函数)。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

④进行实时监控

  • 当发现 Redis 的命中率开始急速降低,需要排查访问对象和访问的数据,和运维人员配合,可以设置黑名单限制服务。

2 缓存的击穿 

2.1 问题描述 

key 对应的数据存在,但在 redis 中过期,此时若有大量并发请求过来,这些请求发现缓存过期一般都会从后端数据库加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端数据库压垮。 

2.2 缓存击穿的现象 

数据库访问压力瞬时增加,数据库崩溃 redis 里面没有出现大量 key 过期 redis 正常运行 缓存击穿发生的原因:redis 某个 key 过期了,大量访问使用这个 key(热门 key) 

2.3 解决方案 

key 可能会在某些时间点被超高并发地访问,是一种非常 “热点” 的数据。 

①预先设置热门数据

  • 在 redis 高峰访问之前,把一些热门数据提前存入到 redis 里面,加大这些热门数据 key 的时长。

②实时调整

  • 现场监控哪些数据热门,实时调整 key 的过期时长。

③使用锁

  • 就是在缓存失效的时候(判断拿出来的值为空),不是立即去 load db。 先使用缓存工具的某些带成功操作返回值的操作(比如 Redis 的 SETNX)去 set 一个 mutex key。 当操作返回成功时,再进行 load db 的操作,并回设缓存,最后删除 mutex key;当操作返回失败,证明有线程在 load db,当前线程睡眠一段时间再重试整个 get 缓存的方法。

3 缓存雪崩 

3.1 问题描述

key 对应的数据存在,但在 redis 中过期,此时若有大量并发请求过来,这些请求发现缓存过期一般都会从后端数据库加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端数据库压垮。

缓存雪崩与缓存击穿的区别在于这里针对很多 key 缓存,前者则是某一个 key 正常访问。

3.2 解决方案 

①构建多级缓存架构

  • nginx 缓存 + redis 缓存 + 其他缓存(ehcache 等)。

②使用锁或队列

  • 用加锁或者队列的方式来保证不会有大量的线程对数据库一次性进行读写,从而避免失效时大量的并发请求落到底层存储系统上,该方法不适用高并发情况。

③设置过期标志更新缓存

  • 记录缓存数据是否过期(设置提前量),如果过期会触发通知另外的线程在后台去更新实际 key 的缓存。

④将缓存失效时间分散开

  • 比如可以在原有的失效时间基础上增加一个随机值,比如 1-5 分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。

三.总结 

缓存问题产生原因解决方案
缓存雪崩大量缓存失效,导致数据库过载1. 分散缓存失效时间
2. 多级缓存
3. 缓存高可用
4. 服务降级限流
缓存穿透查询不存在的数据,导致数据库过载1. 布隆过滤器
2. 空值缓存
缓存击穿热点数据失效,导致数据库过载1. 热点数据永不过期
2. 使用互斥锁

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/519496.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用SVD将图像压缩四分之一(MATLAB)

SVD压缩前后数据量减少的原因在于,通过奇异值分解(SVD),我们将原始数据(如图像)转换成了一种更加紧凑的表示形式。这种转换依赖于数据内部的结构和相关性,以及数据中信息的不均匀分布。 让我们…

以 2021inCTF-DeadlyFastGraph 入门 JSC利用

前言 最近一直在入门浏览器的利用,然后一直都在搞 V8,然后接触的比较多的都是一些混淆、越界的洞,希望后面可以入门 jit 然后在今年的阿里云 CTF 中看到了一道 jsc 相关的题目,当时本来想做一做的,但是环境一直没有搭…

vLLM介绍

vLLM是伯克利大学LMSYS组织开源的大语言模型高速推理框架,旨在极大地提升实时场景下的语言模型服务的吞吐与内存使用效率。vLLM是一个快速且易于使用的库,用于 LLM 推理和服务,可以和HuggingFace 无缝集成。vLLM利用了全新的注意力算法「Page…

ZKP价值链路的垂直整合

1. ZKP proof生命周期 从ZKP(zero-knowledge proof)生命周期,先看围绕ZKP的价值链路形成: 1)User intent用户意图:以某用户意图为起点,如想要在某zk-rollup上swap某token、证明其身份、执行某…

java数据结构与算法刷题-----LeetCode405. 数字转换为十六进制数

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846 文章目录 分组位运算 分组位运算 这道题正常来说可以用转换7进制的思想来&…

加速度:电子元器件营销网站的功能和开发周期

据工信部预计,到2023年,我国电子元器件销售总额将达到2.1万亿元。随着资本的涌入,在这个万亿级赛道,市场竞争变得更加激烈的同时,行业数字化发展已是大势所趋。电子元器件B2B商城平台提升数据化驱动能力,扩…

算法学习18:动态规划

算法学习18:动态规划 文章目录 算法学习18:动态规划前言一、线性DP1.数字三角形:f[i][j] max(f[i - 1][j - 1] a[i][j], f[i - 1][j] a[i][j]);2.1最长上升子序列:f[i] max(f[i], f[j] 1);2.2 打印出最长子序列3.最长公共子序…

[从零开始学习Redis | 第九篇] 深入了解Redis数据类型

前言: 在现代软件开发中,数据存储和处理是至关重要的一环。为了高效地管理数据,并实现快速的读写操作,各种数据库技术应运而生。其中,Redis作为一种高性能的内存数据库,广泛应用于缓存、会话存储、消息队列…

MySQL - 基础三

11、事务管理 CURD不加控制,会有什么问题? 当客户端A检查还有一张票时,将票卖掉,还没有执行更新数据库时,客户端B检查了票数,发现大于0,于是又卖了一次票。然后A将票数更新回数据库。这是就出现…

09 flink-sql 中基于 mysql-cdc 的 select * from test_user 的具体实现

前言 这也是最近帮一个朋友看问题 遇到的一个问题 然后 引发了一下 对于 flink-sql 里面的一些 常规处理的思考, 理解 原始问题主要是 在测试库可以使用 flink-sql 可以正常同步, 但是 在生产环境 无法正常同步数据 这个问题 我们后面单独 记录一篇文章 测试用例 下载…

设计模式总结-外观模式(门面模式)

外观模式 模式动机模式定义模式结构外观模式实例与解析实例一:电源总开关实例二:文件加密 模式动机 引入外观角色之后,用户只需要直接与外观角色交互,用户与子系统之间的复杂关系由外观角色来实现,从而降低了系统的耦…

携程旅行 abtest

声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!wx a15018601872 本文章…

WindowsPowerShell安装配置Vim的折腾记录

说明 vim一直以来都被称为编辑器之神一样的存在。但用不用vim完全取决于你自己,但是作为一个学计算机的同学来说,免不了会和Linux打交道,而大部分的Linux操作系统都预装了vim作为编辑器,如果是简单的任务,其实vim只要会…

c/c++之编译链接

了解我们写的代码是如何转变成可执行文件.exe的是很有必要的,我们将这些底层的东西掌握清楚才能打好基础,筑高楼。 编译链接的全流程 我们平时写代码的文件是.c或者.cpp文件。这里面包括我们的代码,还有宏定义,引用头文件以及注…

齐护机器人方位传感器指南针罗盘陀螺仪

一、方位传感器原理及功能说明 齐护方位传感器是一款集成了三轴磁传感器芯片的方位传感器模块。适用于无人机、机器人、移动和个人手持设备中的罗盘(指南针)、导航和游戏等高精度应用。模块可以感应XYZ平面角度外,还可实现1至2的水平面角度罗…

Python--Django--说明

Django 是基于python 的 Web 开发框架. &nsbp;   Web开发指的是开发基于B/S 架构, 通过前后端的配合, 将后台服务器上的数据在浏览器上展现给前台用户的应用. &nsbp;   在早期, 没有Web框架的时候, 使用 Python CGI 脚本显示数据库中的数据. Web框架致力于解决一些…

考古:IT架构演进之IOE架构

考古:IT架构演进之IOE架构 IOE架构(IBM, Oracle, EMC)出现在20世纪末至21世纪初,是一种典型的集中式架构体系。在这个阶段,企业的关键业务系统往往依赖于IBM的小型机(后来还包括大型机)、Oracle…

后端灰度发布

在软件开发中,"灰度"通常指的是渐进式地将新功能、更新或改进引入到生产环境中,但只对一小部分用户或流量进行部署和测试的过程。这种方法允许开发团队在生产环境中逐步测试新功能,以确保其稳定性、可靠性和用户体验,同…

vscode+anaconda 环境python环境

环境说明: windows 10 vscodeanaconda anaconda 安装: 1、官网下载地址:Free Download | Anaconda 2、安装 接受协议,选择安装位置,一直next,到下面这一步,上面是将Anaconda 添加至环境变量&#xff0…

非关系型数据库--------------------Redis 群集模式

目录 一、集群原理 二、集群的作用 (1)数据分区 (2)高可用 Redis集群的作用和优势 三、Redis集群的数据分片 四、Redis集群的工作原理 五、搭建redis群集模式 5.1启用脚本配置集群 5.2修改集群配置 5.3启动redis节点 5…