音视频——压缩原理

H264视频压缩算法现在无疑是所有视频压缩技术中使用最广泛,

最流行的。随着 x264/openh264以及ffmpeg等开源库的推出,大多数使用者无需再对H264的细节做过多的研究,这大降低了人们使用H264的成本。

但为了用好H264,我们还是要对H264的基本原理弄清楚才行。今天我们就来看看H264的基本原理。

H264概述

在这里插入图片描述

H264压缩技术主要采用了以下几种方法对视频数据进行压缩。包括:

  1. 帧内预测压缩,解决的是空域数据冗余问题。
  2. 帧间预测压缩(运动估计与补偿),解决的是时域数据冗徐问题。
  3. 整数离散余弦变换(DCT),将空间上的相关性变为频域上无关的数据然后进行量化。
  4. CABAC压缩。

经过压缩后的帧分为:I帧,P帧和B帧:

  • I帧:关键帧,采用帧内压缩技术。
  • P帧:向前参考帧,在压缩时,只参考前面已经处理的帧。采用帧音压缩技术。
  • B帧:双向参考帧,在压缩时,它即参考前而的帧,又参考它后面的帧。采用帧间压缩技术。

除了I/P/B帧外,还有图像序列GOP。

GOP:两个I帧之间是一个图像序列,在一个图像序列中只有一个I帧。如下图所示:
在这里插入图片描述

下面我们就来详细描述一下H264压缩技术。

H264压缩技术

H264的基本原理其实非常简单,下我们就简单的描述一下H264压缩数据的过程。通过摄像头采集到的视频帧(按每秒 30 帧算),被送到 H264 编码器的缓冲区中。编码器先要为每一幅图片划分宏块。

以下面这张图为例:

在这里插入图片描述

划分宏块

H264默认是使用 16X16 大小的区域作为一个宏块,也可以划分成 8X8 大小。

在这里插入图片描述划分好宏块后,计算宏块的象素值。

在这里插入图片描述

以此类推,计算一幅图像中每个宏块的像素值,所有宏块都处理完后如下面的样子。

在这里插入图片描述

划分子块

H264对比较平坦的图像使用 16X16 大小的宏块。但为了更高的压缩率,还可以在 16X16 的宏块上更划分出更小的子块。子块的大小可以是 8X16、 16X8、 8X8、 4X8、 8X4、 4X4非常的灵活。

在这里插入图片描述

上幅图中,红框内的 16X16 宏块中大部分是蓝色背景,而三只鹰的部分图像被划在了该宏块内,为了更好的处理三只鹰的部分图像,H264就在 16X16 的宏块内又划分出了多个子块。

在这里插入图片描述

这样再经过帧内压缩,可以得到更高效的数据。下图是分别使用mpeg-2和H264对上面宏块进行压缩后的结果。其中左半部分为MPEG-2子块划分后压缩的结果,右半部分为H264的子块划压缩后的结果,可以看出H264的划分方法更具优势。

在这里插入图片描述

宏块划分好后,就可以对H264编码器缓存中的所有图片进行分组了。

帧分组

对于视频数据主要有两类数据冗余,一类是时间上的数据冗余,另一类是空间上的数据冗余。其中时间上的数据冗余是最大的。下面我们就先来说说视频数据时间上的冗余问题。

为什么说时间上的冗余是最大的呢?假设摄像头每秒抓取30帧,这30帧的数据大部分情况下都是相关联的。也有可能不止30帧的的数据,可能几十帧,上百帧的数据都是关联特别密切的。

对于这些关联特别密切的帧,其实我们只需要保存一帧的数据,其它帧都可以通过这一帧再按某种规则预测出来,所以说视频数据在时间上的冗余是最多的。

为了达到相关帧通过预测的方法来压缩数据,就需要将视频帧进行分组。那么如何判定某些帧关系密切,可以划为一组呢?我们来看一下例子,下面是捕获的一组运动的台球的视频帧,台球从右上角滚到了左下角。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5eMeFcWG-1690276172009)(img/40.png)]

在这里插入图片描述

H264编码器会按顺序,每次取出两幅相邻的帧进行宏块比较,计算两帧的相似度。如下图:
在这里插入图片描述

通过宏块扫描与宏块搜索可以发现这两个帧的关联度是非常高的。进而发现这一组帧的关联度都是非常高的。因此,上面这几帧就可以划分为一组。其算法是:在相邻几幅图像画面中,一般有差别的像素只有10%以内的点,亮度差值变化不超过2%,而色度差值的变化只有1%以内,我们认为这样的图可以分到一组。

在这样一组帧中,经过编码后,我们只保留第一帖的完整数据,其它帧都通过参考上一帧计算出来。我们称第一帧为IDR/I帧,其它帧我们称为P/B帧,这样编码后的数据帧组我们称为GOP

运动估计与补偿

在H264编码器中将帧分组后,就要计算帧组内物体的运动矢量了。还以上面运动的台球视频帧为例,我们来看一下它是如何计算运动矢量的。

H264编码器首先按顺序从缓冲区头部取出两帧视频数据,然后进行宏块扫描。当发现其中一幅图片中有物体时,就在另一幅图的邻近位置(搜索窗口中)进行搜索。如果此时在另一幅图中找到该物体,那么就可以计算出物体的运动矢量了。下面这幅图就是搜索后的台球移动的位置。

在这里插入图片描述

抖音 ----》视频 1M 9M

通过上图中台球位置相差,就可以计算出台图运行的方向和距离。H264依次把每一帧中球移动的距离和方向都记录下来就成了下面的样子。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CFeLZgaf-1690276172012)(img/44.png)]

运动矢量计算出来后,将相同部分(也就是绿色部分)减去,就得到了补偿数据。我们最终只需要将补偿数据进行压缩保存,以后在解码时就可以恢复原图了。压缩补偿后的数据只需要记录很少的一点数据。如下所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-G5ngbg4Z-1690276172013)(img/45.png)]

我们把运动矢量与补偿称为帧间压缩技术,它解决的是视频帧在时间上的数据冗余。除了帧间压缩,帧内也要进行数据压缩,帧内数据压缩解决的是空间上的数据冗余。下面我们就来介绍一下帧内压缩技术。

帧内预测

人眼对图象都有一个识别度,对低频的亮度很敏感,对高频的亮度不太敏感。所以基于一些研究,可以将一幅图像中人眼不敏感的数据去除掉。这样就提出了帧内预测技术。

H264的帧内压缩与JPEG很相似。一幅图像被划分好宏块后,对每个宏块可以进行 9 种模式的预测。找出与原图最接近的一种预测模式。
在这里插入图片描述

下面这幅图是对整幅图中的每个宏块进行预测的过程。

在这里插入图片描述

帧内预测后的图像与原始图像的对比如下:

在这里插入图片描述

然后,将原始图像与帧内预测后的图像相减得残差值。

在这里插入图片描述

再将我们之前得到的预测模式信息一起保存起来,这样我们就可以在解码时恢复原图了。效果如下:

在这里插入图片描述

经过帧内与帧间的压缩后,虽然数据有大幅减少,但还有优化的空间。

对残差数据做DCT

可以将残差数据做整数离散余弦变换,去掉数据的相关性,进一步压缩数据。如下图所示,左侧为原数据的宏块,右侧为计算出的残差数据的宏块。

在这里插入图片描述

将残差数据宏块数字化后如下图所示:

在这里插入图片描述

将残差数据宏块进行 DCT 转换。
在这里插入图片描述

去掉相关联的数据后,我们可以看出数据被进一步压缩了。

在这里插入图片描述

做完 DCT 后,还不够,还要进行 CABAC 进行无损压缩。

DCT原理大白话

这是第一帧画面:P1(我们的参考帧)
在这里插入图片描述

这是第二帧画面:P2(需要编码的帧)

在这里插入图片描述

从视频中截取的两张间隔1-2秒的画面,和实际情况类似,下面我们进行几次运动搜索:

这是一个演示程序,鼠标选中P2上任意16x16的Block,即可搜索出P1上的 BestMatch 宏块。虽然车辆在运动,从远到近,但是依然找到了最接近的宏块坐标。

在这里插入图片描述

这是一个演示程序,鼠标选中P2上任意16x16的Block,即可搜索出P1上的 BestMatch 宏块。虽然车辆在运动,从远到近,但是依然找到了最接近的宏块坐标。

搜索演示2:空中电线交叉位置(上图P1,下图P2)

在这里插入图片描述

在这里插入图片描述

同样顺利在P1中找到最接近P2里海报的宏块位置。

图片全搜索:根据P1和运动矢量数据(在P2中搜索到每一个宏块在P1中最相似的位置集合)还原出来的P2’,即完全用P1各个位置的宏块拼凑出来最像P2的图片P2’,效果如下:

在这里插入图片描述

仔细观察,有些支离破碎对吧?肯定啊,拼凑出来的东西就是这样,现在我们用P2`和P2像素相减,得到差分图 D2 = (P2’ - P2) / 2 + 0x80:

在这里插入图片描述

这就是之前支离破碎的 P2` 加上误差 D2之后变成了清晰可见的样子,基本还原了原图P2。

在这里插入图片描述

由于D2仅仅占5KB,加上压缩过后的运动矢量不过7KB,所以参考P1我们只需要额外 7KB的数据量就可以完整表示P2了,而如果独立将P2用质量尚可的有损压缩方式独立压缩,则至少要去到50-60KB,这一下节省了差不多8倍的空间,正就是所谓运动编码的基本原理。

实际在使用中,参考帧并不一定是前面一帧,也不一定是同一个GOP的I帧,因为GOP间隔较长时,后面的图片离I帧变化可能已经很大了,因此常见做法是最近15帧中选择一帧误差最小的作为参考帧,虽然彩色画面有YUV三个分量,但是大量的预测工作和最有选择通常是根据Y分量的灰度帧进行判断的。

再者误差我们保存的是(P2-P2’)/2 + 0x80,实际使用时我们会用更有效率的方式,比如让[-64,64]之间的色差精度为1,[-255,-64], [64, 255] 之间的色差精度为2-3,这样会更加真实一些。

同时上文很多地方用的是直接lzma2进行简单存储,实际使用时一般会引入熵编码,对数据进行一定层次的整理然后再压缩,性能会好不少。

CABAC

上面的帧内压缩是属于有损压缩技术。也就是说图像被压缩后,无法完全复原。而CABAC属于无损压缩技术。

无损压缩技术大家最熟悉的可能就是哈夫曼编码了,给高频的词一个短码,给低频词一个长码从而达到数据压缩的目的。MPEG-2中使用的VLC就是这种算法,我们以 A-Z 作为例子,A属于高频数据,Z属于低频数据。看看它是如何做的。

在这里插入图片描述

CABAC也是给高频数据短码,给低频数据长码。同时还会根据上下文相关性进行压缩,这种方式又比VLC高效很多。其效果如下:

在这里插入图片描述

现在将 A-Z 换成视频帧,它就成了下面的样子。

在这里插入图片描述

从上面这张图中明显可以看出采用 CACBA 的无损压缩方案要比 VLC 高效的多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/51925.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【KVC补充 Objective-C语言】

一、KVC补充 好,那么接下来,再给大家说一下这个KVC 1.首先我们说,这个KVC,就是指的什么 key value coding 吧 全称就是叫做(Key Value Coding),这是它的全称 那么,你在帮助文档里面搜的时候,你就搜key-value coding 是不是这个啊,key-value coding 然后点击,进…

NASM汇编

1. 前置知识 1. 汇编语言两种风格 intel:我们学的NASM就属于Intel风格AT&T:GCC后端工具默认使用这种风格,当然我们也可以加选项改成intel风格 2. 代码 1. 段分布 .text: 存放的是二进制机器码,只读.data: 存放有初始化的…

uni-app之微信小程序实现‘下载+保存至本地+预览’功能

目录 一、H5如何实现下载功能 二、微信小程序实现下载资源功能方面与H5有很大的不同 三、 微信小程序实现文件(doc,pdf等格式,非图片)下载(下载->保存->预览)功能 四、图片预览、保存、转发、收藏&#xff1…

flask中的cookies介绍

flask中的cookies介绍 “Cookie” 在 web 开发中是一种非常重要的技术,用于在客户端(即用户的浏览器)存储信息,以便在多个页面和多个访问会话之间保持状态。Cookies 通常用于记住用户的登录信息,跟踪用户在站点上的浏…

C++——继承(1)详解

目录 1.继承的含义 2.继承的定义: 3.继承方式 例子1:基类的访问限定符为public,两个派生类的继承方式分别为public、protected时: 例子2: 基类的访问限定符为protected,两个派生类的继承方式分别为pub…

机器学习深度学习——Dropout

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——权重衰减 📚订阅专栏:机器学习&&深度学习 希望文章对你们有所帮助 Drop…

百度与AI:历史、投资和监管

来源:猛兽财经 作者:猛兽财经 百度的人工智能在中国具有先发优势 随着ChatGPT的爆火,人工智能重新引起了投资者的注意,然而人工智能并不是突然爆火的,而是全球众多公司在人工智能技术上进行数十年如一日的研发和积累&a…

MYSQL 分库分表

公司现有业务不断发展,流量剧增,交易数量突破了千万订单,但是订单数据还是单表存储,主从分离后,虽然减少了缓解读请求的压力,但随着写入压力增加,数据库的查询和写入性能都在下降,这…

Kubernetes ConfigMap - Secret - 使用ConfigMap来配置 Redis

目录 ConfigMap : 参考文档:k8s -- ConfigMap - 简书 (jianshu.com) K8S ConfigMap使用 - 知乎 (zhihu.com) ConfigMap的作用类型: 可以作为卷的数据来源:使用 ConfigMap 来配置 Redis | Kubernetes 可以基于文件创建 Conf…

服务器介绍

本文章转载与b战up主谈三国圈,仅用于学习讨论,如有侵权,请联系博主 机架型服务器 堆出同时服务百万人次机组 刀型服务器 服务器炸了 比如用户访问量暴增 超过机组的峰值处理能力,进而导致卡顿或炸服, 适合企业的塔式…

idea下tomcat运行乱码问题解决方法

idea虚拟机选项添加-Dfile.encodingUTF-8

jdk1.7与jdk1.8的HashMap区别1-基本结构与属性对比

一、数据结构差别 1.7:数组链表 1.8:数组链表红黑树 当链表的长度大于8时,数组长度大于64,原来的链表数据结构变为红黑树 二、HashMap中的关键属性和方法区别 方法/变量/类 JDK7 JDK8 备注 DEFAULT_INITIAL_CAPACITY 16 16…

一个类似Office用户界面的WPF库

博主介绍: 🌈一个10年开发经验.Net老程序员,微软MVP、博客专家、CSDN/阿里云 .Net领域优质创作者,专注于.Net领域知识、开源项目分享!🌈 🛕文末获取,加入交流群🛕 &#…

HTML一些基础知识

1、Web标准:主要包含结构、表现、行为。结构用于对网页元素进行整理和分类,主要指HTML。表现用于设置网页元素的板式、颜色、大小等外观样式,主要指的是CSS。行为主要指的是网页模型的定义以及交互的编写,主要是js文件。 Html相当…

css定义超级链接a标签里面的title的样式

效果: 代码: 总结:此css 使用于任何元素,不仅仅是a标签!

时序预测 | MATLAB实现NARX-ANFIS时间序列预测

时序预测 | MATLAB实现NARX-ANFIS时间序列预测 目录 时序预测 | MATLAB实现NARX-ANFIS时间序列预测效果一览基本介绍研究内容程序设计参考资料效果一览

基于Open3D的点云处理13-分割

平面分割(基于RANSAC) 使用RANSAC算法从点云中拟合平面; 接口:segment_plane 测试:Plane-segmentation import open3d as o3dpcd_point_cloud o3d.data.PCDPointCloud() pcd o3d.io.read_point_cloud(pcd_point_cl…

安防监控视频汇聚EasyCVR修改录像计划等待时间较长,是什么原因?

安防监控视频EasyCVR视频融合汇聚平台基于云边端智能协同,支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发等。音视频流媒体视频平台EasyCVR拓展性强,视频能力丰富,具体可实现视频监控直播、视频轮播、视频录像、云存储、回放与检…

基于传统检测算法hog+svm实现图像多分类

直接上效果图: 代码仓库和视频演示b站视频005期: 到此一游7758258的个人空间-到此一游7758258个人主页-哔哩哔哩视频 代码展示: 数据集在datasets文件夹下 运行01train.py即可训练 训练结束后会保存模型在本地 运行02pyqt.py会有一个可视化…

【C语言】函数重难点之函数递归

大家好,我是深鱼~ 目录 一、函数递归知识讲解 1.什么是递归? 2.递归的两个必要条件 2.1练习1: 2.2练习2: 二、递归与迭代 2.1练习3 2.2练习4 一、函数递归知识讲解 1.什么是递归? 程序调用自身的编程技巧称为…