rt-thread的nfs如何实现软硬件对接

        rt-thread(下面简称rtt)有一个封装好的的虚拟文件系统,提供了一套通用的io文件接口例如 open,write,read这些,从没看过rtt的代码也没用过,文件系统在刚毕业的时候只是用过fatfs但没去纠结过。今年1月份听同事说只需要打开几个配置项就能快速上手适配需要的文件系统,这里比较好奇怎么实现的,这里带着前面这个疑问翻了下:

        第一个感受是rtt的驱动框架代码使用非常方便,以前上班为了方便还得自己去搭属于公司自己的驱动框架,早接触rtt这份代码应该能提升搭建的水平。rtt代码也写的比较好看,看注释和命名就能大概猜测作者的总体意图,难怪外面口碑这么好。

代码克隆自rtt官方的仓库,看的demo,这里以elm demo的例子看文件系统如何跟驱动关联起来,代码主要有三部分:

一、dfs 环境初始化

//初始化dfs环境
dfs_init()
//具体文件系统初始化这个会调用dfs_register
elm_init()
//将elm模块的操作集挂在dfs的表里 全部fs的接口都列为 dfs_filesystem_ops
dfs_register(&dfs_elm)

二、硬件初始化:根据具体的文件系统执行具体的初始化流程

下面 ‘->’符号的意思代表下面这行代码是被上面那行所调用

//sd卡初始化
sdcard_initialize()
//这个会实际初始化sd卡硬件相关并且验证能否读取
->sdcard_read()
//获取分区表,如果SD卡外部硬件是被格式化过这个就是有的
dfs_filesystem_get_partition()  
//注册硬件接口到设备抽象层  
//这里注册sd卡设备的ops,设备类型为块设备
rt_device_register(&sdcard_device, "sd0", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);

三、挂载:将具体的文件系统和具体的硬件联系起来

//格式化 挂载失败的时候会执行 这步应该是可选的
dfs_mkfs("elm", "sd0")
//挂载sd到根目录,
dfs_mount("sd0", "/", "elm", 0, 0)

然后下面是rtt官方资料里的一个图:

这里在图上备注了上面看代码三步对应官方资料图里的位置。

图里上层部分理解为 dfs_elm.c是封装好调用fatfs的应用程序,然后把自己的接口ops注册到rtt的dfs,rtt的dfs再提供接口给到通用的posix层,然后上层就能使用open,write,read等文件接口。就算换了个文件系统,也只是注册的文件ops接口换了而已,对上层使用open,write,read等接口没影响。

这里看细节一些的代码(只关注上图的第三步,第一步属于rtt的内容,第二步属于硬件驱动的内容暂且不细究):

//格式化接口
int dfs_mkfs(const char *fs_name, const char *device_name)
    ->ops->mkfs(dev_id, fs_name);//这里是个回调函数,前面调用了dfs_register注册了接口,所以这里其实是调用dfs_elm_mkfs
    -->int dfs_elm_mkfs(rt_device_t dev_id, const char *fs_name)
    --->rt_device_open(dev_id, RT_DEVICE_OFLAG_RDWR);//这里是前面注册了块设备的open接口,也就是下层硬件提供的open接口
    ---->f_mount(fat, logic_nbr, (BYTE)index);//注释里说不这么干格式化会失败
    --->result = f_mkfs(logic_nbr, &opt, work, FF_MAX_SS);//最后实际的格式化接口,这里是fatfs实现的,来自ff.c
            

//挂载接口
int dfs_mount(const char   *device_name,
              const char   *path,
              const char   *filesystemtype,
              unsigned long rwflag,
              const void   *data)
    ->fs->ops      = *ops;//fs是dfs记录的所挂载的文件系统,ops是前面初始化注册的具体fs的接口ops,到这里才是把fs接口跟具体fs连接起来
    ->fs->dev_id   = dev_id;//dev_id是通过具体块设备找到的,通过这个dev_id应该能找到具体的硬件设备接口,到这里就记录了这个文件系统应该支持的驱动接口
    ->(*ops)->mount(fs, rwflag, data)//同格式化接口部分,实际挂载接口是 dfs_elm_mount
    -->disk[index] = fs->dev_id; //记录硬件标号 这里后面读写会用到,个人理解大概是挂一个硬件块设备就当做一个disk,提供对应的接口
    -->f_mount(fat, (const TCHAR *)logic_nbr, 1);//最后实际调用的接口也是来自ff.c  logic_nbr是 驱动器索引就前面index这个标号,挂载上后驱动器的信息都会被保存到fat
                                                                                              

再网上查一个fatfs的使用例子:基于STM32完成FATFS文件系统移植与运用--这是完全免费开源的FAT文件系统-腾讯云开发者社区-腾讯云前面初始化其实就是上面最后调用的两个fatfs的接口,从上分析,挂载那步走完 具体文件系统接口+具体块设备接口就连接起来被记录到了rtt的dfs里。

dfs_elm.c里提供的写函数:

DRESULT disk_write(BYTE drv, const BYTE *buff, DWORD sector, UINT count)
{
    rt_size_t result;
    rt_device_t device = disk[drv];

    result = rt_device_write(device, sector, buff, count);
    if (result == count)
    {
        return RES_OK;
    }

    return RES_ERROR;
}

这个函数就是上面文章里要给fatfs提供的硬件接口函数,前面记录了对应块设备id到disk[drv],drv又是挂载fat的时候保存的,这里属于fatfs的内容不去细究,到这里就知道了最后硬件接口是怎么跟文件系统链接起来的。至于dfs如何提供文件接口这里是rrt纯软件的逻辑就不去细究了。

到这里又有个问题,如果下面挂载了几个块设备,几个文件系统该咋办?--->仔细想想挂载的时候会指定一个路径,目测猜测是通过这个是区分,就好像pc上访问不同的磁盘会区分不同的磁盘路径,例如C:\XXX\XX D:\XXX\XX

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/518701.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++(语法以及易错点2)

1.内联函数 1.1 概念 以inline修饰的函数叫做内联函数,编译时C编译器会在调用内联函数的地方展开,没有函数调 用建立栈帧的开销,内联函数提升程序运行的效率。 ​int ADD(int a,int b) {return ab; }​ 1.2 特性 1. inline是一种以空间换时间…

Java数据结构栈

栈&#xff08;Stack&#xff09; 概念 栈是一种先进后出的数据结构。 栈的使用 import java.util.Stack; public class Test {public static void main(String[] args) {Stack<Integer> s new Stack();s.push(1);s.push(2);s.push(3);s.push(4);System.out.println(s…

精密电阻阻值表和电容容值表

前面2张是电阻阻值表&#xff08;E-96/0603/1%&#xff09; 常见贴片电容的容值表

【智能优化算法】非洲秃鹫优化算法:一种新的全局优化问题的自然启发的元启发式算法

非洲秃鹫优化算法&#xff08;AVOA&#xff09;发表在中科院一区Computers & Industrial Engineering期刊上的论文“African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems" 01.引言 元启发式算…

DAY16|104.二叉树的最大深度,111.二叉树的最小深度,222完全二叉树的个数

文章目录 104.二叉树的最大深度111.二叉树的最小深度222.完全二叉树的个数 104.二叉树的最大深度 文字讲解&#xff1a;二叉树的层序遍历 视频讲解&#xff1a;二叉树的层序遍历 状态&#xff1a;求深度用前序遍历&#xff0c;求高度用后序遍历&#xff1b; 思路&#xff1a; …

【PSINS工具箱】EKF与UKF滤波

描述 对工具箱SINS/GPS,153例程的修改,将EKF和UKF放在一个文件里面,一次运行可以得到两个滤波的结果(带绘图与误差量化输出)。 片段 运行截图 程序完整源代码 在有工具箱的情况下,直接运行此代码,即可得到结果 % 基于PSINS工具箱的IMU数据生成与滤波 % date:2024-2-…

【系统架构师】-系统可靠性分析与设计

1、可靠性与可用性区别 1、系统可靠性&#xff1a;系统在规定时间内及规定的环境下&#xff0c;完成规定功能的能力&#xff0c;即系统无故障运行的概率 2、系统可用性&#xff1a;在某个给定时间点上系统能够按照需求执行的概率。 可靠性分为软件、硬件可靠性 2、可靠性指标…

LeetCode 第二题:冒泡排序详解 【2/1000】含imagemagick动态效果图

&#x1f464;作者介绍&#xff1a;10年大厂数据\经营分析经验&#xff0c;现任大厂数据部门负责人。 会一些的技术&#xff1a;数据分析、算法、SQL、大数据相关、python 作者专栏每日更新&#xff1a; LeetCode解锁1000题: 打怪升级之旅 LeetCode解锁1000题: 打怪升级之旅htt…

使用微带线快速进行电感、电容的等效(Matlab代码实现)

使用微带线快速进行电感、电容的等效&#xff08;Matlab代码实现&#xff09; 目录 使用微带线快速进行电感、电容的等效&#xff08;Matlab代码实现&#xff09;1、高低阻抗微带线的近似等效2、等效电容的ADS测试3、等效电感的ADS测试 1、高低阻抗微带线的近似等效 更加精确的…

利用JS、CSS实现列表自动滑动滚动

零.业务需求 这几天在做大屏项目&#xff0c;对于大屏有很多信息需要实时滚动&#xff0c;废了点力气学的明明白白的&#xff0c;特来记录供大家学习。 0.1实现效果 一.逻辑分析 1.1滑动窗口和滚动条 当我们使用<table>或者<ul>标签时&#xff0c;我们可以制作…

蓝桥杯第十四届C++A组(未完)

【规律题】平方差 题目描述 给定 L, R&#xff0c;问 L ≤ x ≤ R 中有多少个数 x 满足存在整数 y,z 使得 。 输入格式 输入一行包含两个整数 L, R&#xff0c;用一个空格分隔。 输出格式 输出一行包含一个整数满足题目给定条件的 x 的数量。 样例输入 1 5 样例输出 …

Redis中的Sentinel(二)

Sentinel 初始化Sentinel状态。 在应用了Sentinel的专用代码之后&#xff0c;接下来&#xff0c;服务器会初始化一个sentinel.c/sentinelState结构(简称Sentinel状态),这个结构 保存了服务器中所有和Sentinel功能有关的状态(服务器的一般状态仍然由redis.h/redisServer保存);…

【java数据结构-二叉树(上)】

java数据结构-二叉树&#xff08;上&#xff09; 二叉树的概念二叉树的节点介绍 二叉树构造如何使用兄弟表示法构造二叉树两种特别的二叉树二叉树的基本性质&#xff1a; 二叉树的存储二叉树的遍历&#xff1a;前序遍历&#xff1a;中序遍历&#xff1a;后序遍历&#xff1a;层…

最新ChatGPT4.0工具使用教程:GPTs,Midjourney绘画,AI换脸,GPT语音对话,文档分析一站式系统

一、前言 ChatGPT3.5、GPT4.0、相信对大家应该不感到陌生吧&#xff1f;简单来说&#xff0c;GPT-4技术比之前的GPT-3.5相对来说更加智能&#xff0c;会根据用户的要求生成多种内容甚至也可以和用户进行创作交流。 然而&#xff0c;GPT-4对普通用户来说都是需要额外付费才可以…

基于RDMA的云服务能力实践与探索

01 背景 随着基于大数据大模型构建的数据系统越来越有商业价值&#xff0c;机器学习的玩家也越来越多&#xff0c;数据量越来越大。为解决海量数据在服务器之间的同步效率问题&#xff0c;RDMA(Remote Direct Memory Access) 技术逐渐走进了网络技术人员的视野。RDMA为什么…

yolov8多分支任务头训练

目前已知的yolov8可以针对多个任务进行单独训练,但是暂时还没有开放针对多个任务头同时进行训练的教程,本文章针对yolov8的多任务训练进行详细介绍。 先放上效果图: 三个任务,分别是目标检测、可行驶区域、车道线,具体步骤请往下看。 一、环境配置 从如下github下载代码…

Flutter Don‘t use ‘BuildContext‘s across async gaps.

Flutter提示Don‘t use ‘BuildContext‘s across async gaps.的解决办法—flutter里state的mounted属性

10-热点文章-定时计算

xxl-Job分布式任务调度 1 今日内容 1.1 需求分析 目前实现的思路&#xff1a;从数据库直接按照发布时间倒序查询 问题1&#xff1a; 如何访问量较大&#xff0c;直接查询数据库&#xff0c;压力较大 问题2&#xff1a; 新发布的文章会展示在前面&#xff0c;并不是热点文章 …

交叉验证(Cross-Validation)

交叉验证的基本概念 交叉验证通常用于评估机器学习模型在未知数据上的性能。它将数据集分成k个不同的子集&#xff0c;然后进行k次训练和验证。在每次迭代中&#xff0c;选择一个子集作为测试集&#xff0c;其余的子集作为训练集。这样&#xff0c;每个子集都用作过测试集&…

Debian安装1panel管理面板教程-最新

1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。 1Panel面板是一个强大的服务器管理工具&#xff0c;它通过提供一站式管理、易于使用的界面、高度的可定制性、安全可靠的性能、强大的扩展性以及活跃的社区支持&#xff0c;为用户提供了一个高效、便捷的管理解决方案…