一篇文章带你学会7大基本算法(2024最新保姆级教程)

img

🏠个人主页:尘觉主页

文章目录

  • 算法 - 排序
    • 约定
    • 选择排序
    • 冒泡排序
    • 插入排序
    • 希尔排序
    • 归并排序
      • 1. 归并方法
      • 2. 自顶向下归并排序
      • 3. 自底向上归并排序
    • 快速排序
      • 1. 基本算法
      • 2. 切分
      • 3. 性能分析
      • 4. 算法改进
          • 4.1 切换到插入排序
          • 4.2 三数取中
          • 4.3 三向切分
      • 5. 基于切分的快速选择算法
    • 堆排序
      • 1. 堆
      • 2. 上浮和下沉
      • 3. 插入元素
      • 4. 删除最大元素
      • 5. 堆排序
          • 5.1 构建堆
          • 5.2 交换堆顶元素与最后一个元素
      • 6. 分析
    • 小结
      • 1. 排序算法的比较
      • 2. Java 的排序算法实现

算法 - 排序

约定

待排序的元素需要实现 Java 的 Comparable 接口,该接口有 compareTo() 方法,可以用它来判断两个元素的大小关系。

使用辅助函数 less() 和 swap() 来进行比较和交换的操作,使得代码的可读性和可移植性更好。

排序算法的成本模型是比较和交换的次数。

public abstract class Sort<T extends Comparable<T>> {

    public abstract void sort(T[] nums);

    protected boolean less(T v, T w) {
        return v.compareTo(w) < 0;
    }

    protected void swap(T[] a, int i, int j) {
        T t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}

选择排序

从数组中选择最小元素,将它与数组的第一个元素交换位置。再从数组剩下的元素中选择出最小的元素,将它与数组的第二个元素交换位置。不断进行这样的操作,直到将整个数组排序。

选择排序需要 ~N2/2 次比较和 ~N 次交换,它的运行时间与输入无关,这个特点使得它对一个已经排序的数组也需要这么多的比较和交换操作。


public class Selection<T extends Comparable<T>> extends Sort<T> {

    @Override
    public void sort(T[] nums) {
        int N = nums.length;
        for (int i = 0; i < N - 1; i++) {
            int min = i;
            for (int j = i + 1; j < N; j++) {
                if (less(nums[j], nums[min])) {
                    min = j;
                }
            }
            swap(nums, i, min);
        }
    }
}

冒泡排序

从左到右不断交换相邻逆序的元素,在一轮的循环之后,可以让未排序的最大元素上浮到右侧。

在一轮循环中,如果没有发生交换,那么说明数组已经是有序的,此时可以直接退出。

public class Bubble<T extends Comparable<T>> extends Sort<T> {

    @Override
    public void sort(T[] nums) {
        int N = nums.length;
        boolean isSorted = false;
        for (int i = N - 1; i > 0 && !isSorted; i--) {
            isSorted = true;
            for (int j = 0; j < i; j++) {
                if (less(nums[j + 1], nums[j])) {
                    isSorted = false;
                    swap(nums, j, j + 1);
                }
            }
        }
    }
}

插入排序

每次都将当前元素插入到左侧已经排序的数组中,使得插入之后左侧数组依然有序。

对于数组 {3, 5, 2, 4, 1},它具有以下逆序:(3, 2), (3, 1), (5, 2), (5, 4), (5, 1), (2, 1), (4, 1),插入排序每次只能交换相邻元素,令逆序数量减少 1,因此插入排序需要交换的次数为逆序数量。

插入排序的时间复杂度取决于数组的初始顺序,如果数组已经部分有序了,那么逆序较少,需要的交换次数也就较少,时间复杂度较低。

  • 平均情况下插入排序需要 ~N2/4 比较以及 ~N2/4 次交换;
  • 最坏的情况下需要 ~N2/2 比较以及 ~N2/2 次交换,最坏的情况是数组是倒序的;
  • 最好的情况下需要 N-1 次比较和 0 次交换,最好的情况就是数组已经有序了。

public class Insertion<T extends Comparable<T>> extends Sort<T> {

    @Override
    public void sort(T[] nums) {
        int N = nums.length;
        for (int i = 1; i < N; i++) {
            for (int j = i; j > 0 && less(nums[j], nums[j - 1]); j--) {
                swap(nums, j, j - 1);
            }
        }
    }
}

希尔排序

对于大规模的数组,插入排序很慢,因为它只能交换相邻的元素,每次只能将逆序数量减少 1。希尔排序的出现就是为了解决插入排序的这种局限性,它通过交换不相邻的元素,每次可以将逆序数量减少大于 1。

希尔排序使用插入排序对间隔 h 的序列进行排序。通过不断减小 h,最后令 h=1,就可以使得整个数组是有序的。

image-20240405104724136

public class Shell<T extends Comparable<T>> extends Sort<T> {

    @Override
    public void sort(T[] nums) {

        int N = nums.length;
        int h = 1;

        while (h < N / 3) {
            h = 3 * h + 1; // 1, 4, 13, 40, ...
        }

        while (h >= 1) {
            for (int i = h; i < N; i++) {
                for (int j = i; j >= h && less(nums[j], nums[j - h]); j -= h) {
                    swap(nums, j, j - h);
                }
            }
            h = h / 3;
        }
    }
}

希尔排序的运行时间达不到平方级别,使用递增序列 1, 4, 13, 40, … 的希尔排序所需要的比较次数不会超过 N 的若干倍乘于递增序列的长度。后面介绍的高级排序算法只会比希尔排序快两倍左右。

归并排序

归并排序的思想是将数组分成两部分,分别进行排序,然后归并起来。


1. 归并方法

归并方法将数组中两个已经排序的部分归并成一个。

public abstract class MergeSort<T extends Comparable<T>> extends Sort<T> {

    protected T[] aux;


    protected void merge(T[] nums, int l, int m, int h) {

        int i = l, j = m + 1;

        for (int k = l; k <= h; k++) {
            aux[k] = nums[k]; // 将数据复制到辅助数组
        }

        for (int k = l; k <= h; k++) {
            if (i > m) {
                nums[k] = aux[j++];

            } else if (j > h) {
                nums[k] = aux[i++];

            } else if (aux[i].compareTo(aux[j]) <= 0) {
                nums[k] = aux[i++]; // 先进行这一步,保证稳定性

            } else {
                nums[k] = aux[j++];
            }
        }
    }
}

2. 自顶向下归并排序

将一个大数组分成两个小数组去求解。

因为每次都将问题对半分成两个子问题,这种对半分的算法复杂度一般为 O(NlogN)。

public class Up2DownMergeSort<T extends Comparable<T>> extends MergeSort<T> {

    @Override
    public void sort(T[] nums) {
        aux = (T[]) new Comparable[nums.length];
        sort(nums, 0, nums.length - 1);
    }

    private void sort(T[] nums, int l, int h) {
        if (h <= l) {
            return;
        }
        int mid = l + (h - l) / 2;
        sort(nums, l, mid);
        sort(nums, mid + 1, h);
        merge(nums, l, mid, h);
    }
}

3. 自底向上归并排序

先归并那些微型数组,然后成对归并得到的微型数组。

public class Down2UpMergeSort<T extends Comparable<T>> extends MergeSort<T> {

    @Override
    public void sort(T[] nums) {

        int N = nums.length;
        aux = (T[]) new Comparable[N];

        for (int sz = 1; sz < N; sz += sz) {
            for (int lo = 0; lo < N - sz; lo += sz + sz) {
                merge(nums, lo, lo + sz - 1, Math.min(lo + sz + sz - 1, N - 1));
            }
        }
    }
}

快速排序

1. 基本算法

  • 归并排序将数组分为两个子数组分别排序,并将有序的子数组归并使得整个数组排序;
  • 快速排序通过一个切分元素将数组分为两个子数组,左子数组小于等于切分元素,右子数组大于等于切分元素,将这两个子数组排序也就将整个数组排序了。

image-20240405105058552

public class QuickSort<T extends Comparable<T>> extends Sort<T> {

    @Override
    public void sort(T[] nums) {
        shuffle(nums);
        sort(nums, 0, nums.length - 1);
    }

    private void sort(T[] nums, int l, int h) {
        if (h <= l)
            return;
        int j = partition(nums, l, h);
        sort(nums, l, j - 1);
        sort(nums, j + 1, h);
    }

    private void shuffle(T[] nums) {
        List<Comparable> list = Arrays.asList(nums);
        Collections.shuffle(list);
        list.toArray(nums);
    }
}

2. 切分

取 a[l] 作为切分元素,然后从数组的左端向右扫描直到找到第一个大于等于它的元素,再从数组的右端向左扫描找到第一个小于它的元素,交换这两个元素。不断进行这个过程,就可以保证左指针 i 的左侧元素都不大于切分元素,右指针 j 的右侧元素都不小于切分元素。当两个指针相遇时,将切分元素 a[l] 和 a[j] 交换位置。

c4859290-e27d-4f12-becf-e2a5c1f3a275

private int partition(T[] nums, int l, int h) {
    int i = l, j = h + 1;
    T v = nums[l];
    while (true) {
        while (less(nums[++i], v) && i != h) ;
        while (less(v, nums[--j]) && j != l) ;
        if (i >= j)
            break;
        swap(nums, i, j);
    }
    swap(nums, l, j);
    return j;
}

3. 性能分析

快速排序是原地排序,不需要辅助数组,但是递归调用需要辅助栈。

快速排序最好的情况下是每次都正好将数组对半分,这样递归调用次数才是最少的。这种情况下比较次数为 CN=2CN/2+N,复杂度为 O(NlogN)。

最坏的情况下,第一次从最小的元素切分,第二次从第二小的元素切分,如此这般。因此最坏的情况下需要比较 N2/2。为了防止数组最开始就是有序的,在进行快速排序时需要随机打乱数组。

4. 算法改进

4.1 切换到插入排序

因为快速排序在小数组中也会递归调用自己,对于小数组,插入排序比快速排序的性能更好,因此在小数组中可以切换到插入排序。

4.2 三数取中

最好的情况下是每次都能取数组的中位数作为切分元素,但是计算中位数的代价很高。一种折中方法是取 3 个元素,并将大小居中的元素作为切分元素。

4.3 三向切分

对于有大量重复元素的数组,可以将数组切分为三部分,分别对应小于、等于和大于切分元素。

三向切分快速排序对于有大量重复元素的随机数组可以在线性时间内完成排序。

public class ThreeWayQuickSort<T extends Comparable<T>> extends QuickSort<T> {

    @Override
    protected void sort(T[] nums, int l, int h) {
        if (h <= l) {
            return;
        }
        int lt = l, i = l + 1, gt = h;
        T v = nums[l];
        while (i <= gt) {
            int cmp = nums[i].compareTo(v);
            if (cmp < 0) {
                swap(nums, lt++, i++);
            } else if (cmp > 0) {
                swap(nums, i, gt--);
            } else {
                i++;
            }
        }
        sort(nums, l, lt - 1);
        sort(nums, gt + 1, h);
    }
}

5. 基于切分的快速选择算法

快速排序的 partition() 方法,会返回一个整数 j 使得 a[l…j-1] 小于等于 a[j],且 a[j+1…h] 大于等于 a[j],此时 a[j] 就是数组的第 j 大元素。

可以利用这个特性找出数组的第 k 个元素。

该算法是线性级别的,假设每次能将数组二分,那么比较的总次数为 (N+N/2+N/4+…),直到找到第 k 个元素,这个和显然小于 2N。

public T select(T[] nums, int k) {
    int l = 0, h = nums.length - 1;
    while (h > l) {
        int j = partition(nums, l, h);

        if (j == k) {
            return nums[k];

        } else if (j > k) {
            h = j - 1;

        } else {
            l = j + 1;
        }
    }
    return nums[k];
}

堆排序

1. 堆

堆中某个节点的值总是大于等于或小于等于其子节点的值,并且堆是一颗完全二叉树。

堆可以用数组来表示,这是因为堆是完全二叉树,而完全二叉树很容易就存储在数组中。位置 k 的节点的父节点位置为 k/2,而它的两个子节点的位置分别为 2k 和 2k+1。这里不使用数组索引为 0 的位置,是为了更清晰地描述节点的位置关系。

f48883c8-9d8a-494e-99a4-317d8ddb8552

public class Heap<T extends Comparable<T>> {

    private T[] heap;
    private int N = 0;

    public Heap(int maxN) {
        this.heap = (T[]) new Comparable[maxN + 1];
    }

    public boolean isEmpty() {
        return N == 0;
    }

    public int size() {
        return N;
    }

    private boolean less(int i, int j) {
        return heap[i].compareTo(heap[j]) < 0;
    }

    private void swap(int i, int j) {
        T t = heap[i];
        heap[i] = heap[j];
        heap[j] = t;
    }
}

2. 上浮和下沉

在堆中,当一个节点比父节点大,那么需要交换这个两个节点。交换后还可能比它新的父节点大,因此需要不断地进行比较和交换操作,把这种操作称为上浮。

99d5e84e-fc2a-49a3-8259-8de274617756

private void swim(int k) {
    while (k > 1 && less(k / 2, k)) {
        swap(k / 2, k);
        k = k / 2;
    }
}

类似地,当一个节点比子节点来得小,也需要不断地向下进行比较和交换操作,把这种操作称为下沉。一个节点如果有两个子节点,应当与两个子节点中最大那个节点进行交换。

4bf5e3fb-a285-4138-b3b6-780956eb1df1

private void sink(int k) {
    while (2 * k <= N) {
        int j = 2 * k;
        if (j < N && less(j, j + 1))
            j++;
        if (!less(k, j))
            break;
        swap(k, j);
        k = j;
    }
}

3. 插入元素

将新元素放到数组末尾,然后上浮到合适的位置。

public void insert(Comparable v) {
    heap[++N] = v;
    swim(N);
}

4. 删除最大元素

从数组顶端删除最大的元素,并将数组的最后一个元素放到顶端,并让这个元素下沉到合适的位置。

public T delMax() {
    T max = heap[1];
    swap(1, N--);
    heap[N + 1] = null;
    sink(1);
    return max;
}

5. 堆排序

把最大元素和当前堆中数组的最后一个元素交换位置,并且不删除它,那么就可以得到一个从尾到头的递减序列,从正向来看就是一个递增序列,这就是堆排序。

5.1 构建堆

无序数组建立堆最直接的方法是从左到右遍历数组进行上浮操作。一个更高效的方法是从右至左进行下沉操作,如果一个节点的两个节点都已经是堆有序,那么进行下沉操作可以使得这个节点为根节点的堆有序。叶子节点不需要进行下沉操作,可以忽略叶子节点的元素,因此只需要遍历一半的元素即可。

c2ca8dd2-8d00-4a3e-bece-db7849ac9cfd

5.2 交换堆顶元素与最后一个元素

交换之后需要进行下沉操作维持堆的有序状态。

d156bcda-ac8d-4324-95e0-0c8df41567c9

public class HeapSort<T extends Comparable<T>> extends Sort<T> {
    /**
     * 数组第 0 个位置不能有元素
     */
    @Override
    public void sort(T[] nums) {
        int N = nums.length - 1;
        for (int k = N / 2; k >= 1; k--)
            sink(nums, k, N);

        while (N > 1) {
            swap(nums, 1, N--);
            sink(nums, 1, N);
        }
    }

    private void sink(T[] nums, int k, int N) {
        while (2 * k <= N) {
            int j = 2 * k;
            if (j < N && less(nums, j, j + 1))
                j++;
            if (!less(nums, k, j))
                break;
            swap(nums, k, j);
            k = j;
        }
    }

    private boolean less(T[] nums, int i, int j) {
        return nums[i].compareTo(nums[j]) < 0;
    }
}

6. 分析

一个堆的高度为 logN,因此在堆中插入元素和删除最大元素的复杂度都为 logN。

对于堆排序,由于要对 N 个节点进行下沉操作,因此复杂度为 NlogN。

堆排序是一种原地排序,没有利用额外的空间。

现代操作系统很少使用堆排序,因为它无法利用局部性原理进行缓存,也就是数组元素很少和相邻的元素进行比较和交换。

小结

1. 排序算法的比较

算法稳定性时间复杂度空间复杂度备注
选择排序×N21
冒泡排序N21
插入排序N ~ N21时间复杂度和初始顺序有关
希尔排序×N 的若干倍乘于递增序列的长度1改进版插入排序
快速排序×NlogNlogN
三向切分快速排序×N ~ NlogNlogN适用于有大量重复主键
归并排序NlogNN
堆排序×NlogN1无法利用局部性原理

快速排序是最快的通用排序算法,它的内循环的指令很少,而且它还能利用缓存,因为它总是顺序地访问数据。它的运行时间近似为 ~cNlogN,这里的 c 比其它线性对数级别的排序算法都要小。

使用三向切分快速排序,实际应用中可能出现的某些分布的输入能够达到线性级别,而其它排序算法仍然需要线性对数时间。

2. Java 的排序算法实现

Java 主要排序方法为 java.util.Arrays.sort(),对于原始数据类型使用三向切分的快速排序,对于引用类型使用归并排序。

😁热门专栏推荐
想学习vue的可以看看这个

java基础合集

数据库合集

redis合集

nginx合集

linux合集

手写机制

微服务组件

spring_尘觉

springMVC

mybits

等等等还有许多优秀的合集在主页等着大家的光顾感谢大家的支持

🤔欢迎大家加入我的社区 尘觉社区

文章到这里就结束了,如果有什么疑问的地方请指出,诸佬们一起来评论区一起讨论😁
希望能和诸佬们一起努力,今后我们一起观看感谢您的阅读🍻
如果帮助到您不妨3连支持一下,创造不易您们的支持是我的动力🤞

img

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/518369.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue 打包 插槽 inject reactive draggable 动画 foreach pinia状态管理

在Vue项目中&#xff0c;当涉及到打包、插槽&#xff08;Slots&#xff09;、inject/reactive、draggable、transition、foreach以及pinia时&#xff0c;这些都是Vue框架的不同特性和库&#xff0c;它们各自在Vue应用中有不同的用途。下面我将逐一解释这些概念&#xff0c;并说…

用 Wireshark 解码 H.264

H264&#xff0c;你不知道的小技巧-腾讯云开发者社区-腾讯云 这篇文章写的非常好 这里仅做几点补充 init.lua内容&#xff1a; -- Set enable_lua to false to disable Lua support. enable_lua trueif not enable_lua thenreturn end-- If false and Wireshark was start…

Vue使用高德地图(快速上手)

1.在高德平台注册账号 2.我的 > 管理管理中添加Key 3.安装依赖 npm i amap/amap-jsapi-loader --save 或 yarn add amap/amap-jsapi-loader --save 4.导入 AMapLoade import AMapLoader from amap/amap-jsapi-loader; 5.直接上代码&#xff0c;做好了注释&#xff08;初…

单细胞RNA测序(scRNA-seq)SRA数据下载及fastq-dumq数据拆分

单细胞RNA测序&#xff08;scRNA-seq&#xff09;入门可查看以下文章&#xff1a; 单细胞RNA测序&#xff08;scRNA-seq&#xff09;工作流程入门 单细胞RNA测序&#xff08;scRNA-seq&#xff09;细胞分离与扩增 1. NCBI查询scRNA-seq SRA数据 NCBI地址&#xff1a; https…

前视声呐目标识别定位(六)-代码解析之目标截图并传输

前视声呐目标识别定位&#xff08;一&#xff09;-基础知识 前视声呐目标识别定位&#xff08;二&#xff09;-目标识别定位模块 前视声呐目标识别定位&#xff08;三&#xff09;-部署至机器人 前视声呐目标识别定位&#xff08;四&#xff09;-代码解析之启动识别模块 …

51单片机实验02- P0口流水灯实验

目录 一、实验的背景和意义 二、实验目的 三、实验步骤 四、实验仪器 五、实验任务及要求 1&#xff0c;从led4开始右移 1&#xff09;思路 ①起始灯 &#xff08;led4&#xff09; ②右移 2&#xff09;效果 3&#xff09;代码☀ 2&#xff0c;从其他小灯并向右依…

服务器设置了端口映射之后外网还是访问不了服务器

目录 排查思路参考&#xff1a; 1、确认服务是否在运行 2、确认端口映射设置是否正确 3、使用防火墙测试到服务器的连通性 4、检查服务内部的配置 5、解决办法 6、学习小分享 我们在一个完整的网络数据存储服务系统设备中都会存有业务服务器、防火墙、交换机、路由器&a…

【Laravel】09 用模型批量赋值简化代码 数据库关系

【Laravel】09 用模型批量赋值简化代码 & 数据库关系 1. 用模型批量赋值简化代码2. 数据库关系 1. 用模型批量赋值简化代码 原来存储一个值 2. 数据库关系 这里可以看到两个SQL是一样的

STM32之HAL开发——不同系列SPI功能对比(附STM32Cube配置)

不同系列STM32——SPI框图 F1系列框图 F4系列框图 TI模式时序图特性 F7系列框图 H7系列框图 注意&#xff1a;F7系列以及H7系列支持Quad-SPI模式&#xff0c;可以连接单&#xff0c;双或者四条数据线的Flash存储介质。 SPI——Cube配置流程 RCC时钟源配置 SYS系统调试模式配…

Spring 详细总结

文章目录 第一章 IOC容器第一节 Spring简介1、一家公司2、Spring旗下的众多项目3、Spring Framework①Spring Framework优良特性②Spring Framework五大功能模块 第二节 IOC容器概念1、普通容器①生活中的普通容器②程序中的普通容器 2、复杂容器①生活中的复杂容器②程序中的复…

MySQL、Oracle查看字节和字符长度个数的函数

目录 0. 总结1. MySQL1.1. 造数据1.2. 查看字符/字节个数 2. Oracle2.1. 造数据2.2. 查看字符/字节个数 0. 总结 databasecharbyteMySQLchar_length()length()Oraclelength()lengthB() 1. MySQL 1.1. 造数据 sql drop table if exists demo; create table demo (id …

Cesium 批量种树

1、准备树种建模 分各种级别建模LOD1-LODN 其中meta.json长这样&#xff1a; Gltf再3Dmax中导出Obj,再通过ObjToGltf的工具转换&#xff0c;参考 https://editor.csdn.net/md/?articleId96484597 2、准备shp点数据。&#xff08;shp中的点位就是种树的位置&#xff09; 3、准…

【并发编程】线程安全

线程安全 1. 讲一下 synchronized 关键字的底层原理 1.1 基本使用 如下抢票的代码&#xff0c;如果不加锁&#xff0c;就会出现超卖或者一张票卖给多个人 synchronized&#xff0c;同步【对象锁】采用互斥的方式让同一时刻至多只有一个线程能持有【对象锁】 其它线程再想获…

多模态AI全解析:概念、应用与风险

大家好&#xff0c;在人工智能的快速发展浪潮中&#xff0c;多模态学习作为一项革命性技术&#xff0c;正逐渐改变着我们与机器交互的方式。 自OpenAI推出ChatGPT以来&#xff0c;人工智能已经从处理单一文本输入的单模态工具&#xff0c;迈向了能够理解和生成包括文本、图像、…

【算法】【floodfill】洪水灌溉

文章目录 1. 岛屿数量2. 岛屿最大面积3. 被围绕的区域4. 太平洋大西洋水流问题5. 扫雷游戏6. 机器人的运动范围 1. 岛屿数量 &#x1f449;&#x1f517;题目链接 给你一个由 ‘1’&#xff08;陆地&#xff09;和 ‘0’&#xff08;水&#xff09;组成的的二维网格&#xff0…

查看MySQL版本的方式

文章目录 一、使用cmd输入命令行查看二、在mysql客户端服务器里查询 一、使用cmd输入命令行查看 1、打开 cmd &#xff0c;输入命令行&#xff1a; mysql --version 2、还是打开cmd&#xff0c;输入命令行&#xff1a;mysql -V (注意了&#xff0c;此时的V是个大写的V) 二、…

unity之 “Allow ‘unsafe‘ code“ 在哪里。

导入unity中的代码&#xff0c;出现如下错误&#xff0c;该如何解决&#xff1f; Unsafe code may only appear if compiling with /unsafe. Enable "Allow unsafe code" in Player Settings to fix this error 解决这个问题&#xff0c;只需要设置就可以。 设置的地…

深入理解计算机系统 家庭作业 2.80

/* 网上很多都没说清楚到底出题人是什么用意,用意就是既要又要,既要不溢出,又要不丢失精度.所以就分开处理,在丢失之前把丢失的部分保存下来,然后两部分算好再相加. 可以先看一下我的2.79题 用的是先乘后除 会溢出 符合题意 2.80要求的是先除后成 不会溢出 但会丢失精度 核…

C++中二叉搜索树的模拟实现(二叉搜索树是map,set的底层原理)

搜索二叉树 定义 搜索二叉树:左子树小于根,右子树大于根.搜索二叉树的中序序列是升序的.所以对于二叉树而言,它的左子树和右子数都是二叉搜索树 下图就是二叉搜索树 二叉搜索树的性质: 二叉搜索树的中序遍历出的数据是有序的,并且二叉树搜索树在查找某个数的时候,一般情况下…

9proxy—数据采集工具全面测评

9Proxy数据采集工具Unlock the web with 9Proxy, the top residential proxy provider. Get unlimited bandwidth, affordable prices, and secure HTTPS and Socks5 configurations.https://9proxy.com/?utm_sourceblog&utm_mediumcsdn&utm_campaignyan 前言 在当今数…