Hadoop-Yarn

 一、Yarn资源调度器

思考:

1)如何管理集群资源?

2)如何给任务合理分配资源?

Yarn 是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台。

而 MapReduce 等运算程序则相当于运行于操作系统之上的应用程序。

1.1 Yarn基础架构

YARN 主要由 ResourceManager、NodeManager、ApplicationMaster 和 Container 等组件构成。

  • ResourceManager(RM)
    • 处理客户端请求
    • 监控NodeManager
    • 资源的分配与调度
    • 启动或监控ApplicationMaster
  • NodeManager(NM)
    • 管理单个节点上的资源
    • 处理来自ResourceManager的命令
    • 处理来自ApplicationMaster的命令
  • ApplicationMaster
    • 为应用程序申请资源并分配给内部的任务
    • 任务的监控与容错
  • Container
    • Container是 YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁 盘、网络等。

1.2 Yarn工作机制

  1. MR 程序提交到客户端所在的节点。
  2. YarnRunner 向 ResourceManager 申请一个 Application。
  3. RM 将该应用程序的资源路径返回给 YarnRunner。
  4. 该程序将运行所需资源提交到 HDFS 上。
  5. 程序资源提交完毕后,申请运行 mrAppMaster。
  6. RM 将用户的请求初始化成一个 Task。
  7. 其中一个 NodeManager 领取到 Task 任务。
  8. 该 NodeManager 创建容器 Container,并产生 MRAppmaster。
  9. Container 从 HDFS 上拷贝资源到本地。
  10. MRAppmaster 向 RM 申请运行 MapTask 资源。
  11. RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager 分别领取任务并创建容器。
  12. MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个 NodeManager分别启动 MapTask,MapTask 对数据分区排序。
  13. MrAppMaster 等待所有 MapTask 运行完毕后,向 RM 申请容器,运行 ReduceTask。
  14. ReduceTask 向 MapTask 获取相应分区的数据。
  15. 程序运行完毕后,MR 会向 RM 申请注销自己。

1.3 作业提交全过程

HDFS、YARN、MapReduce三者关系

作业提交过程之YARN:

作业提交过程之HDFS & MapReduce

作业提交全过程详解

(1)作业提交

第 1 步:Client 调用 job.waitForCompletion 方法,向整个集群提交 MapReduce 作业。

第 2 步:Client 向 RM 申请一个作业 id。

第 3 步:RM 给 Client 返回该 job 资源的提交路径和作业 id。

第 4 步:Client 提交 jar 包、切片信息和配置文件到指定的资源提交路径。

第 5 步:Client 提交完资源后,向 RM 申请运行 MrAppMaster。

(2)作业初始化

第 6 步:当 RM 收到 Client 的请求后,将该 job 添加到容量调度器中。

第 7 步:某一个空闲的 NM 领取到该 Job。第 8 步:该 NM 创建 Container,并产生 MRAppmaster。第 9 步:下载 Client 提交的资源到本地。

(3)任务分配

第 10 步:MrAppMaster 向 RM 申请运行多个 MapTask 任务资源。

第 11 步:RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager分别领取任务并创建容器。

(4)任务运行

第 12 步:MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个NodeManager 分别启动 MapTask,MapTask 对数据分区排序。

第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。

第 14 步:ReduceTask 向 MapTask 获取相应分区的数据。

第 15 步:程序运行完毕后,MR 会向 RM 申请注销自己。

(5)进度和状态更新

YARN 中的任务将其进度和状态(包括 counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval 设置)向应用管理器请求进度更新, 展示给用户。

(6)作业完成

除了向应用管理器请求作业进度外, 客户端每 5 秒都会通过调用 waitForCompletion()来检查作业是否完成。

时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。

作业完成之后, 应用管理器和 Container 会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。

1.4 Yarn调度器和调度算法

目前,Hadoop 作业调度器主要有三种:FIFO、容量(Capacity Scheduler)和公平(FairScheduler)。

Apache Hadoop3.1.3 默认的资源调度器是 Capacity Scheduler。CDH 框架默认调度器是 Fair Scheduler。具体设置详见:yarn-default.xml 文件

1.4.1 先进先出调度器

FIFO 调度器(First In First Out):单队列,根据提交作业的先后顺序,先来先服务。

优点:简单易懂;

缺点:不支持多队列,生产环境很少使用

1.4.2 容量调度器

Capacity Scheduler 是 Yahoo 开发的多用户调度器。

  • 多队列:每个队列可配置一定的资源量,每个队列采用FIFO调度策略。
  • 容量保证:管理员可为每个队列设置资源最低保证和资源使用上限
  • 灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列。
  • 多租户:支持多用户共享集群和多应用程序同时运行。为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定。

1)队列资源分配

从root开始,使用深度优先算法,优先选择资源占用率最低的队列分配资源。

2)作业资源分配

默认按照提交作业的优先级和提交时间顺序分配资源。

3)容器资源分配

按照容器的优先级分配资源;如果优先级相同,按照数据本地性原则:

(1)任务和数据在同一节点

(2)任务和数据在同一机架

(3)任务和数据不在同一节点也不在同一机架

1.4.3 公平调度器

Fair Schedulere 是 Facebook 开发的多用户调度器。

1)与容量调度器相同点

(1)多队列:支持多队列多作业

(2)容量保证:管理员可为每个队列设置资源最低保证和资源使用上线

(3)灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列。

(4)多租户:支持多用户共享集群和多应用程序同时运行;为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定。

2)与容量调度器不同点

(1)核心调度策略

容量调度器:优先选择资源利用率低的队列公平调度器:

优先选择对资源的缺额比例大的

(2)每个队列可以单独设置资源分配方式

容量调度器:FIFO、 DRF

公平调度器:FIFO、FAIR、DRF

公平调度器设计目标是:在时间尺度上,所有作业获得公平的资源。某一时刻一个作业应获资源和实际获取资源的差距叫“缺额”•

调度器会优先为缺额大的作业分配资源。

公平调度器队列资源分配方式:

1)FIFO策略

公平调度器每个队列资源分配策略如果选择FIFO的话,此时公平调度器相当于上面讲过的容量调度器。

2)Fair策略

Fair 策略(默认)是一种基于最大最小公平算法实现的资源多路复用方式,默认情况下,每个队列内部采用该方式分配资源。这意味着,如果一个队列中有两个应用程序同时运行,则每个应用程序可得到1/2的资源;如果三个应用程序同时运行,则每个应用程序可得到1/3的资源。

具体资源分配流程和容量调度器一致;(1)选择队列(2)选择作业(3)选择容器

以上三步,每一步都是按照公平策略分配资源

  • 实际最小资源份额:mindshare = Min(资源需求量,配置的最小资源)
  • 是否饥饿:isNeedy = 资源使用量 < mindshare(实际最小资源份额)
  • 资源分配比:minShareRatio = 资源使用量 / Max(mindshare, 1)
  • 资源使用权重比:useToWeightRatio = 资源使用量 / 权重

1.5 Yarn常用命令

Yarn 状态的查询,除了可以在 hadoop103:8088 页面查看外,还可以通过命令操作。常见的命令操作如下所示:

1.5.1 yarn application查看任务

(1)列出所有 Application

yarn application -list

(2)根据 Application 状态过滤:yarn application -list -appStates (所有状态:ALL、NEW、NEW_SAVING、SUBMITTED、ACCEPTED、RUNNING、FINISHED、FAILED、KILLED)

yarn application -list -appStates

(3)Kill 掉 Application:

yarn application -killapplication_1612577921195_0001

1.5.2 yarn logs查看日志

(1)查询 Application 日志:yarn logs -applicationId

yarn logs -applicationIdapplication_1612577921195_0001

(2)查询 Container 日志:yarn logs -applicationId -containerId

yarn logs -applicationIdapplication_1612577921195_0001 -containerIdcontainer_1612577921195_0001_01_000001

1.5.3 yarn application attempt 查看尝试运行的任务

(1)列出所有 Application 尝试的列表:yarn applicationattempt -list

yarn applicationattempt -listapplication_1612577921195_0001

(2)打印 ApplicationAttemp 状态:yarn applicationattempt -status

yarn applicationattempt -statusappattempt_1612577921195_0001_000001

1.5.4 yarn container 查看容器

(1)列出所有 Container:yarn container -list

yarn container -listappattempt_1612577921195_0001_000001

(2)打印 Container 状态:yarn container -status

yarn container -statuscontainer_1612577921195_0001_01_000001

1.5.5 yarn node 查看节点状态

列出所有节点:yarn node -list -all

yarn node -list -all

1.5.6 yarn rmadmin更新配置

加载队列配置:yarn rmadmin -refreshQueues

yarn rmadmin -refreshQueues

1.5.7 yarn queue查看队列

打印队列信息:yarn queue -status

yarn queue -status default

1.6 Yarn生产环境核心参数

1)ResourceManager相关

  • yarn.resourcemanager.scheduler.class 配置调度器,默认容量
  • yarn.resourcemanager.scheduler.client.thread-count ResourceManager处理调度器请求的线程数量,默认50

2)NodeManager相关

  • yarn.nodemanager.resource.detect-hardware-capabilities 是否让yarn自己检测硬件进行配置,默认false
  • yarn.nodemanager.resource.count-logical-processors-as-cores 是否将虚拟核数当作CPU核数,默认false
  • yarn.nodemanager.resource.pcores-vcores-multiplier 虚拟核数和物理核数乘数,例如:4核8线程,该参数就应设为2,默认1.0
  • yarn.nodemanager.resource.memory-mb NodeManager使用内存,默认8G
  • yarn.nodemanager.resource.system-reserved-memory-mb NodeManager为系统保留多少内存
  • yarn.nodemanager.pmem-check-enabled 是否开启物理内存检查限制container,默认打开
  • yarn.nodemanager.vmem-check-enabled 是否开启虚拟内存检查限制container,默认打开
  • yarn.nodemanager.vmem-pmem-ratio 虚拟内存物理内存比例,默认2.1

3)Container相关

  • yarn.scheduler.minimum-allocation-mb 容器最最小内存,默认1G
  • yarn.scheduler.maximum-allocation-mb 容器最最大内存,默认8G
  • yarn.scheduler.minimum-allocation-vcores 容器最小CPU核数,默认1个
  • yarn.scheduler.maximum-allocation-vcores 容器最大CPU核数,默认4个

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/517609.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

EfficientVMamba实战:使用 EfficientVMamba实现图像分类任务(二)

文章目录 训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度&#xff0c;DP多卡&#xff0c;EMA定义训练和验证函数训练函数验证函数调用训练和验证方法 运行以及结果查看测试完整的代码 在上…

paddlepaddle模型转换onnx指导文档

一、检查本机cuda版本 1、右键找到invdia控制面板 2、找到系统信息 3、点开“组件”选项卡&#xff0c; 可以看到cuda版本&#xff0c;我们这里是cuda11.7 cuda驱动版本为516.94 二、安装paddlepaddle环境 1、获取pip安装命令 &#xff0c;我们到paddlepaddle官网&#xff…

【数据分析面试】6.计算对话总数(SQL)

题目&#xff1a;计算对话总数 给定了名为 messenger_sends 的消息发送表格&#xff0c;找出总共有多少个唯一的对话。 注&#xff1a;在某些记录中&#xff0c;receiver_id 和 sender_id 从初始消息中互换了。这些记录应视为同一个对话。 示例&#xff1a; 输入&#xff1…

flink源码编译-job提交

1、启动standalone集群的taskmanager standalone集群中的taskmanager启动类为 TaskManagerRunner 2 打开master启动类 通过 ctrln快捷键&#xff0c;找到、并打开类&#xff1a; org.apache.flink.runtime.taskexecutor.TaskManagerRunner 3 修改运⾏配置 基本完全按照mas…

『python爬虫』巨量http代理使用 每天白嫖1000ip(保姆级图文)

目录 注册 实名得到API链接和账密 Python3requests调用Scpay总结 欢迎关注 『python爬虫』 专栏&#xff0c;持续更新中 欢迎关注 『python爬虫』 专栏&#xff0c;持续更新中 注册 实名 注册巨量http 用户概览中领取1000ip,在动态代理中使用.用来测试一下还是不错的 得到AP…

四、MySQL读写分离之MyCAT

一、读写分离概述 1、什么是读写分离&#xff1a; 读写分离&#xff1a;就是将读写操作分发到不同的服务器&#xff0c;读操作分发到对应的服务器 &#xff08;slave&#xff09;&#xff0c;写操作分发到对应的服务器&#xff08;master&#xff09; ① M-S (主从) 架构下&…

前端路径问题总结

1.相对路径 不以/开头 以当前资源的所在路径为出发点去找目标资源 语法: ./表示当前资源的路径 ../表示当前资源的上一层路径 缺点:不同位置,相对路径写法不同2.绝对路径 以固定的路径作为出发点作为目标资源,和当前资源所在路径没关系 语法:以/开头,不同的项目中,固定的路径…

【JavaScript】函数 ⑦ ( 函数定义方法 | 命名函数 | 函数表达式 )

文章目录 一、函数定义方法1、命名函数2、函数表达式3、函数表达式示例 一、函数定义方法 1、命名函数 定义函数的标准方式 就是 命名函数 , 也就是之前讲过的 声明函数 ; 函数 声明后 , 才能被调用 ; 声明函数的语法如下 : function functionName(parameters) { // 函数体 …

八数码问题——A*算法的应用(A-Star)

文章目录 1 问题描述2 启发式搜索3 A*算法3.1 参考网址3.2 是什么3.3 为什么A*算法适用于八数码问题3.4 A* 算法的基本框架 4 A* 算法如何解决八数码问题4.1 八数码状态的存储4.2 启发式函数4.3 构造目标状态元素位置的字典4.4 在二维列表中查找目标元素4.5 A* 算法主体4.6 路径…

第15届蓝桥STEMA测评真题剖析-2024年3月10日Scratch编程初中级组

[导读]&#xff1a;超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成&#xff0c;后续会不定期解读蓝桥杯真题&#xff0c;这是Scratch蓝桥杯真题解析第180讲。 第15届蓝桥第5次STEMA测评&#xff0c;这是2024年3月10日举办的STEMA&#xff0c;比赛仍然采取线上形式。这…

汽车EDI:如何与奔驰建立EDI连接?

梅赛德斯-奔驰是世界闻名的豪华汽车品牌&#xff0c;无论是技术实力还是历史底蕴都在全球汽车主机厂中居于领先位置。奔驰拥有多种车型&#xff0c;多元化的产品布局不仅满足了不同用户画像的需求&#xff0c;也对其供应链体系有着极大的考验。 本文将为大家介绍梅赛德斯-奔驰乘…

Hadoop-HDFS

资料来源&#xff1a;尚硅谷-Hadoop 一、HDFS 概述 1.1 HDFS 产出背景及定义 1.1.1 HDFS 产生背景 随着数据量越来越大&#xff0c;在一个服务器上存不下所有的数据&#xff0c;那么就分配到更多的服务器管理的磁盘中&#xff0c;但是不方便管理和维护&#xff0c;迫切需要…

k8s存储卷 PV与PVC 理论学习

介绍 存储的管理是一个与计算实例的管理完全不同的问题。PersistentVolume 子系统为用户和管理员提供了一组 API&#xff0c;将存储如何制备的细节从其如何被使用中抽象出来。为了实现这点&#xff0c;我们引入了两个新的 API 资源&#xff1a;PersistentVolume 和 Persistent…

域名如何端口映射?

域名端口映射是一种重要的网络技术&#xff0c;它可以实现不同设备之间的远程通信。在全球互联网的背景下&#xff0c;人们之间的通信变得非常便捷&#xff0c;但随之而来的问题是如何有效地实现设备之间的互联互通。域名端口映射正是为了解决这个问题而出现的。 天联组网 天联…

【蓝桥杯选拔赛真题55】C++最长路线 第十四届蓝桥杯青少年创意编程大赛 算法思维 C++编程选拔赛真题解

目录 C最长路线 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 七、推荐资料 C最长路线 第十四届蓝桥杯青少年创意编程大赛C选拔赛真题 一、题目要求 1、编程实现 有一个N*M的矩阵&#xff0c;且矩阵…

vulnhub----natraj靶机

文章目录 一.信息收集1.网段探测2.端口扫描3.版本服务探测4.漏扫5.目录扫描 二.漏洞利用1.分析信息2..fuzz工具 三.getshell四.提权六.nmap提权 一.信息收集 1.网段探测 因为使用的是VMware&#xff0c;靶机的IP地址是192.168.9.84 ┌──(root㉿kali)-[~/kali/vulnhub] └─…

案例:非功能性需求的设计

在咨询中看到很多项目组对于非功能性需求没有做设计&#xff0c;很多项目组在设计文档中仅仅是把非功能性需求的描述拷贝到设计文档的非功能性章节。因此特地设计了两个简单的需求给大家参考&#xff0c;希望能够引导设计人员重视非功能性需求的设计。

55555555555555

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和…

QoS特性详解

​什么是QOS QoS(Quality of Service)是服务质量的简称,是指网络向特定流量提供特定的服务的能力。QoS可以确保关键业务的流畅运行,提高网络资源利用率,并保障网络安全。 常见网络设备QoS特性: 思科交换机: 支持基于策略的QoS(PBR)和基于类的QoS(CBQoS)。 PBR: 基于源I…

ubuntu更换国内镜像源,下载增速

方法一&#xff1a;通过脚本更换源 1.备份原来的源 sudo cp /etc/apt/sources.list /etc/apt/sources_init.list 将原来的源保留一下&#xff0c;以后想用还可以继续用 2.更换源 sudo gedit /etc/apt/sources.list 使用gedit打开文档&#xff0c;将下面的阿里源复制进去&am…