EfficientVMamba实战:使用 EfficientVMamba实现图像分类任务(二)

文章目录

  • 训练部分
    • 导入项目使用的库
    • 设置随机因子
    • 设置全局参数
    • 图像预处理与增强
    • 读取数据
    • 设置Loss
    • 设置模型
    • 设置优化器和学习率调整策略
    • 设置混合精度,DP多卡,EMA
    • 定义训练和验证函数
      • 训练函数
      • 验证函数
      • 调用训练和验证方法
  • 运行以及结果查看
  • 测试
  • 完整的代码

在上一篇文章中完成了前期的准备工作,见链接:
EfficientVMamba实战:使用EfficientVMamba实现图像分类任务(一)
前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解,模型的介绍和实验效果等内容。接下来,这篇主要是讲解如何训练和测试

训练部分

完成上面的步骤后,就开始train脚本的编写,新建train.py

导入项目使用的库

在train.py导入

import json
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.utils import accuracy, AverageMeter, ModelEma
from sklearn.metrics import classification_report
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
from models.vmamba_efficient import EfficientMamba_T
from torch.autograd import Variable
from torchvision import datasets
torch.backends.cudnn.benchmark = False
import warnings
warnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES']="0,1"

os.environ[‘CUDA_VISIBLE_DEVICES’]=“0,1” 选择显卡,index从0开始,比如一台机器上有8块显卡,我们打算使用前两块显卡训练,设置为“0,1”,同理如果打算使用第三块和第六块显卡训练,则设置为“2,5”。

设置随机因子

def seed_everything(seed=42):
    os.environ['PYHTONHASHSEED'] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True

设置了固定的随机因子,再次训练的时候就可以保证图片的加载顺序不会发生变化。

设置全局参数

if __name__ == '__main__':
    #创建保存模型的文件夹
    file_dir = 'checkpoints/EfficientVMamba/'
    if os.path.exists(file_dir):
        print('true')
        os.makedirs(file_dir,exist_ok=True)
    else:
        os.makedirs(file_dir)

    # 设置全局参数
    model_lr = 3e-4
    BATCH_SIZE = 16
    EPOCHS = 300
    DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    use_amp = True  # 是否使用混合精度
    use_dp = True #是否开启dp方式的多卡训练
    classes = 12
    resume = None
    CLIP_GRAD = 5.0
    Best_ACC = 0 #记录最高得分
    use_ema=True
    model_ema_decay=0.9998
    start_epoch=2
    seed=1
    seed_everything(seed)

创建一个名为 ‘checkpoints/EfficientVMamba/’ 的文件夹,用于保存训练过程中的模型。如果该文件夹已经存在,则不会再次创建,否则会创建该文件夹。

设置训练模型的全局参数,包括学习率、批次大小、训练轮数、设备选择(是否使用 GPU)、是否使用混合精度、是否开启数据并行等。

注:建议使用GPU,CPU太慢了。

参数的详细解释:

model_lr:学习率,根据实际情况做调整。

BATCH_SIZE:batchsize,根据显卡的大小设置。

EPOCHS:epoch的个数,一般300够用。

use_amp:是否使用混合精度。

use_dp :是否开启dp方式的多卡训练?

classes:类别个数。

resume:再次训练的模型路径,如果不为None,则表示加载resume指向的模型继续训练。

CLIP_GRAD:梯度的最大范数,在梯度裁剪里设置。

Best_ACC:记录最高ACC得分。

use_ema:是否使用ema,如果没有使用预训练模型,直接打开use_ema会造成不上分的情况。可以先关闭ema训练几个epoch,然后,将训练的权重赋值到resume,再将启用ema

model_ema_decay:设置了EMA的衰减率。衰减率决定了当前模型权重和之前的EMA权重在更新新的EMA权重时的相对贡献。具体来说,每次更新EMA权重时,都会按照以下公式进行:
newemaweight = decay × oldemaweight + ( 1 − decay ) × currentmodelweight \text{newemaweight} = \text{decay} \times \text{oldemaweight} + (1 - \text{decay}) \times \text{currentmodelweight} newemaweight=decay×oldemaweight+(1decay)×currentmodelweight
例如,衰减率被设置为0.9998。这意味着在更新EMA权重时,大约99.98%的权重来自之前的EMA权重,而剩下的0.02%来自当前的模型权重。由于衰减率非常接近1,EMA权重会更多地依赖于之前的EMA权重,而不是当前的模型权重。这有助于平滑模型权重的波动,并减少噪声对最终模型性能的影响。

start_epoch:开始的epoch,默认是1,如果重新训练时,需要给start_epoch重新赋值。

SEED:随机因子,数值可以随意设定,但是设置后,不要随意更改,更改后,图片加载的顺序会改变,影响测试结果。

  file_dir = 'checkpoints/EfficientVMamba/'

这是存放EfficientVMamba模型的路径。

图像预处理与增强

   # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5,5),sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])
    ])
    
    mixup_fn = Mixup(
        mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
        prob=0.1, switch_prob=0.5, mode='batch',
        label_smoothing=0.1, num_classes=classes)

数据处理和增强比较简单,加入了随机10度的旋转、高斯模糊、色彩饱和度明亮度的变化、Mixup等比较常用的增强手段,做了Resize和归一化。

 transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

这里设置为计算mean和std。
这里注意下Resize的大小,由于选用的模型输入是224×224的大小,所以要Resize为224×224。

 mixup_fn = Mixup(
        mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
        prob=0.1, switch_prob=0.5, mode='batch',
        label_smoothing=0.1, num_classes=classes)

定义了一个 Mixup 函数。Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。

读取数据

   # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE,num_workers=8, shuffle=True,drop_last=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
  • 使用pytorch默认读取数据的方式,然后将dataset_train.class_to_idx打印出来,预测的时候要用到。

  • 对于train_loader ,drop_last设置为True,因为使用了Mixup数据增强,必须保证每个batch里面的图片个数为偶数(不能为零),如果最后一个batch里面的图片为奇数,则会报错,所以舍弃最后batch的迭代,pin_memory设置为True,可以加快运行速度,num_workers多进程加载图像,不要超过CPU 的核数。

  • 将dataset_train.class_to_idx保存到txt文件或者json文件中。

class_to_idx的结果:

{'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}

设置Loss

  # 实例化模型并且移动到GPU
    criterion_train = SoftTargetCrossEntropy()
    criterion_val = torch.nn.CrossEntropyLoss()

设置loss函数,训练的loss为:SoftTargetCrossEntropy,验证的loss:nn.CrossEntropyLoss()。

设置模型

      #设置模型
    model_ft = EfficientMamba_T()
    print(model_ft)
    num_freature=model_ft.classifier.head.in_features
    model_ft.classifier.head=nn.Linear(num_freature,classes)

    if resume:
        model=torch.load(resume)
        print(model['state_dict'].keys())
        model_ft.load_state_dict(model['state_dict'])
        Best_ACC=model['Best_ACC']
        start_epoch=model['epoch']+1
    model_ft.to(DEVICE)
    print(model_ft)
  • 设置模型为EfficientMamba_T,获取分类模块的in_features,然后,修改为数据集的类别,也就是classes。
  • 如果resume设置为已经训练的模型的路径,则加载模型接着resume指向的模型接着训练,使用模型里的Best_ACC初始化Best_ACC,使用epoch参数初始化start_epoch。
  • 如果模型输出是classes的长度,则表示修改正确了。

在这里插入图片描述

设置优化器和学习率调整策略

   # 选择简单暴力的Adam优化器,学习率调低
   optimizer = optim.AdamW(model_ft.parameters(),lr=model_lr)
   cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-6)
  • 优化器设置为adamW。
  • 学习率调整策略选择为余弦退火。

设置混合精度,DP多卡,EMA

    if use_amp:
        scaler = torch.cuda.amp.GradScaler()
    if torch.cuda.device_count() > 1 and use_dp:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model_ft = torch.nn.DataParallel(model_ft)
    if use_ema:
        model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device=DEVICE,
            resume=resume)
    else:
        model_ema=None

定义训练和验证函数

训练函数

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch,model_ema):
    model.train()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True)
        samples, targets = mixup_fn(data, target)
        output = model(samples)
        optimizer.zero_grad()
        if use_amp:
            with torch.cuda.amp.autocast():
                loss = torch.nan_to_num(criterion_train(output, targets))
            scaler.scale(loss).backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
            # Unscales gradients and calls
            # or skips optimizer.step()
            scaler.step(optimizer)
            # Updates the scale for next iteration
            scaler.update()
        else:
            loss = criterion_train(output, targets)
            loss.backward()
            # torch.nn.utils.clip_grad_norm_(models.parameters(), CLIP_GRAD)
            optimizer.step()

        if model_ema is not None:
            model_ema.update(model)
        torch.cuda.synchronize()
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        loss_meter.update(loss.item(), target.size(0))
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item(), lr))
    ave_loss =loss_meter.avg
    acc = acc1_meter.avg
    print('epoch:{}\tloss:{:.2f}\tacc:{:.2f}'.format(epoch, ave_loss, acc))
    return ave_loss, acc


训练的主要步骤:

1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。

2、进入循环,将data和target放入device上,non_blocking设置为True。如果pin_memory=True的话,将数据放入GPU的时候,也应该把non_blocking打开,这样就只把数据放入GPU而不取出,访问时间会大大减少。
如果pin_memory=False时,则将non_blocking设置为False。

3、将数据输入mixup_fn生成mixup数据。

4、将第三部生成的mixup数据输入model,输出预测结果,然后再计算loss。

5、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。

6、如果使用混合精度,则

  • with torch.cuda.amp.autocast(),开启混合精度。
  • 计算loss。torch.nan_to_num将输入中的NaN、正无穷大和负无穷大替换为NaN、posinf和neginf。默认情况下,nan会被替换为零,正无穷大会被替换为输入的dtype所能表示的最大有限值,负无穷大会被替换为输入的dtype所能表示的最小有限值。
  • scaler.scale(loss).backward(),梯度放大。
  • torch.nn.utils.clip_grad_norm_,梯度裁剪,放置梯度爆炸。
  • scaler.step(optimizer) ,首先把梯度值unscale回来,如果梯度值不是inf或NaN,则调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新。
  • 更新下一次迭代的scaler。

否则,直接反向传播求梯度。torch.nn.utils.clip_grad_norm_函数执行梯度裁剪,防止梯度爆炸。

7、如果use_ema为True,则执行model_ema的updata函数,更新模型。

8、 torch.cuda.synchronize(),等待上面所有的操作执行完成。

9、接下来,更新loss,ACC1,ACC5的值。

等待一个epoch训练完成后,计算平均loss和平均acc

验证函数

# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
    global Best_ACC
    model.eval()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    val_list = []
    pred_list = []

    for data, target in test_loader:
        for t in target:
            val_list.append(t.data.item())
        data, target = data.to(device,non_blocking=True), target.to(device,non_blocking=True)
        output = model(data)
        loss = criterion_val(output, target)
        _, pred = torch.max(output.data, 1)
        for p in pred:
            pred_list.append(p.data.item())
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
    acc = acc1_meter.avg
    print('\nVal set: Average loss: {:.4f}\tAcc1:{:.3f}%\tAcc5:{:.3f}%\n'.format(
        loss_meter.avg,  acc,  acc5_meter.avg))

    if acc > Best_ACC:
        if isinstance(model, torch.nn.DataParallel):
            torch.save(model.module, file_dir + '/' + 'best.pth')
        else:
            torch.save(model, file_dir + '/' + 'best.pth')
        Best_ACC = acc
    if isinstance(model, torch.nn.DataParallel):
        state = {

            'epoch': epoch,
            'state_dict': model.module.state_dict(),
            'Best_ACC':Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.module.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    else:
        state = {
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'Best_ACC': Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    return val_list, pred_list, loss_meter.avg, acc

验证集和训练集大致相似,主要步骤:

1、在val的函数上面添加@torch.no_grad(),作用:所有计算得出的tensor的requires_grad都自动设置为False。即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。

2、定义参数:
loss_meter: 测试的loss
acc1_meter:top1的ACC。
acc5_meter:top5的ACC。
total_num:总的验证集的数量。
val_list:验证集的label。
pred_list:预测的label。

3、进入循环,迭代test_loader:

将label保存到val_list。

将data和target放入device上,non_blocking设置为True。

将data输入到model中,求出预测值,然后输入到loss函数中,求出loss。

调用torch.max函数,将预测值转为对应的label。

将输出的预测值的label存入pred_list。

调用accuracy函数计算ACC1和ACC5

更新loss_meter、acc1_meter、acc5_meter的参数。

4、本次epoch循环完成后,求得本次epoch的acc、loss。
5、接下来是保存模型的逻辑
如果ACC比Best_ACC高,则保存best模型
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module。
否则直接保存model。
注:保存best模型,我们采用保存整个模型的方式,这样保存的模型包含网络结构,在预测的时候,就不用再重新定义网络了。

6、接下来保存每个epoch的模型。
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module.state_dict()。

新建个字典,放置Best_ACC、epoch和 model.module.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。
否则,新建个字典,放置Best_ACC、epoch和 model.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。

注意:对于每个epoch的模型只保存了state_dict参数,没有保存整个模型文件。

调用训练和验证方法

    # 训练与验证
    is_set_lr = False
    log_dir = {}
    train_loss_list, val_loss_list, train_acc_list, val_acc_list, epoch_list = [], [], [], [], []
    if resume and os.path.isfile(file_dir+"result.json"):
        with open(file_dir+'result.json', 'r', encoding='utf-8') as file:
            logs = json.load(file)
            train_acc_list = logs['train_acc']
            train_loss_list = logs['train_loss']
            val_acc_list = logs['val_acc']
            val_loss_list = logs['val_loss']
            epoch_list = logs['epoch_list']
    for epoch in range(start_epoch, EPOCHS + 1):
        epoch_list.append(epoch)
        log_dir['epoch_list'] = epoch_list
        train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema)
        train_loss_list.append(train_loss)
        train_acc_list.append(train_acc)
        log_dir['train_acc'] = train_acc_list
        log_dir['train_loss'] = train_loss_list
        if use_ema:
            val_list, pred_list, val_loss, val_acc = val(model_ema.ema, DEVICE, test_loader)
        else:
            val_list, pred_list, val_loss, val_acc = val(model_ft, DEVICE, test_loader)
        val_loss_list.append(val_loss)
        val_acc_list.append(val_acc)
        log_dir['val_acc'] = val_acc_list
        log_dir['val_loss'] = val_loss_list
        log_dir['best_acc'] = Best_ACC
        with open(file_dir + '/result.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(log_dir))
        print(classification_report(val_list, pred_list, target_names=dataset_train.class_to_idx))
        if epoch < 600:
            cosine_schedule.step()
        else:
            if not is_set_lr:
                for param_group in optimizer.param_groups:
                    param_group["lr"] = 1e-6
                    is_set_lr = True
        fig = plt.figure(1)
        plt.plot(epoch_list, train_loss_list, 'r-', label=u'Train Loss')
        # 显示图例
        plt.plot(epoch_list, val_loss_list, 'b-', label=u'Val Loss')
        plt.legend(["Train Loss", "Val Loss"], loc="upper right")
        plt.xlabel(u'epoch')
        plt.ylabel(u'loss')
        plt.title('Model Loss ')
        plt.savefig(file_dir + "/loss.png")
        plt.close(1)
        fig2 = plt.figure(2)
        plt.plot(epoch_list, train_acc_list, 'r-', label=u'Train Acc')
        plt.plot(epoch_list, val_acc_list, 'b-', label=u'Val Acc')
        plt.legend(["Train Acc", "Val Acc"], loc="lower right")
        plt.title("Model Acc")
        plt.ylabel("acc")
        plt.xlabel("epoch")
        plt.savefig(file_dir + "/acc.png")
        plt.close(2)

调用训练函数和验证函数的主要步骤:

1、定义参数:

  • is_set_lr,是否已经设置了学习率,当epoch大于一定的次数后,会将学习率设置到一定的值,并将其置为True。
  • log_dir:记录log用的,将有用的信息保存到字典中,然后转为json保存起来。
  • train_loss_list:保存每个epoch的训练loss。
  • val_loss_list:保存每个epoch的验证loss。
  • train_acc_list:保存每个epoch的训练acc。
  • val_acc_list:保存么每个epoch的验证acc。
  • epoch_list:存放每个epoch的值。

如果是接着上次的断点继续训练则读取log文件,然后把log取出来,赋值到对应的list上。
循环epoch

1、调用train函数,得到 train_loss, train_acc,并将分别放入train_loss_list,train_acc_list,然后存入到logdir字典中。

2、调用验证函数,判断是否使用EMA?
如果使用EMA,则传入model_ema.ema,否则,传入model_ft。得到val_list, pred_list, val_loss, val_acc。将val_loss, val_acc分别放入val_loss_list和val_acc_list中,然后存入到logdir字典中。

3、保存log。

4、打印本次的测试报告。

5、如果epoch大于600,将学习率设置为固定的1e-6。

6、绘制loss曲线和acc曲线。

运行以及结果查看

完成上面的所有代码就可以开始运行了。点击右键,然后选择“run train.py”即可,运行结果如下:

在这里插入图片描述

在每个epoch测试完成之后,打印验证集的acc、recall等指标。

EfficientVMamba测试结果:

在这里插入图片描述

在这里插入图片描述

测试

测试,我们采用一种通用的方式。

测试集存放的目录如下图:

EfficientVMamba_Demo
├─test
│  ├─1.jpg
│  ├─2.jpg
│  ├─3.jpg
│  ├ ......
└─test.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os

classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat', 'Fat Hen', 'Loose Silky-bent',
           'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
])

DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=torch.load('checkpoints/EfficientVMamba/best.pth')
model.eval()
model.to(DEVICE)
print(model)

path = 'test/'
testList = os.listdir(path)
for file in testList:
    img = Image.open(path + file)
    img = transform_test(img)
    img.unsqueeze_(0)
    img = Variable(img).to(DEVICE)
    out = model(img)
    # Predict
    _, pred = torch.max(out.data, 1)
    print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

测试的主要逻辑:

1、定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

2、定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

3、 torch.load加载model,然后将模型放在DEVICE里,

4、循环 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。循环里面的主要逻辑:

  • 使用Image.open读取图片
  • 使用transform_test对图片做归一化和标椎化。
  • img.unsqueeze_(0) 增加一个维度,由(3,224,224)变为(1,3,224,224)
  • Variable(img).to(DEVICE):将数据放入DEVICE中。
  • model(img):执行预测。
  • _, pred = torch.max(out.data, 1):获取预测值的最大下角标。

运行结果:

在这里插入图片描述

完整的代码

完整的代码:

https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/89069099

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/517607.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

paddlepaddle模型转换onnx指导文档

一、检查本机cuda版本 1、右键找到invdia控制面板 2、找到系统信息 3、点开“组件”选项卡&#xff0c; 可以看到cuda版本&#xff0c;我们这里是cuda11.7 cuda驱动版本为516.94 二、安装paddlepaddle环境 1、获取pip安装命令 &#xff0c;我们到paddlepaddle官网&#xff…

【数据分析面试】6.计算对话总数(SQL)

题目&#xff1a;计算对话总数 给定了名为 messenger_sends 的消息发送表格&#xff0c;找出总共有多少个唯一的对话。 注&#xff1a;在某些记录中&#xff0c;receiver_id 和 sender_id 从初始消息中互换了。这些记录应视为同一个对话。 示例&#xff1a; 输入&#xff1…

flink源码编译-job提交

1、启动standalone集群的taskmanager standalone集群中的taskmanager启动类为 TaskManagerRunner 2 打开master启动类 通过 ctrln快捷键&#xff0c;找到、并打开类&#xff1a; org.apache.flink.runtime.taskexecutor.TaskManagerRunner 3 修改运⾏配置 基本完全按照mas…

『python爬虫』巨量http代理使用 每天白嫖1000ip(保姆级图文)

目录 注册 实名得到API链接和账密 Python3requests调用Scpay总结 欢迎关注 『python爬虫』 专栏&#xff0c;持续更新中 欢迎关注 『python爬虫』 专栏&#xff0c;持续更新中 注册 实名 注册巨量http 用户概览中领取1000ip,在动态代理中使用.用来测试一下还是不错的 得到AP…

四、MySQL读写分离之MyCAT

一、读写分离概述 1、什么是读写分离&#xff1a; 读写分离&#xff1a;就是将读写操作分发到不同的服务器&#xff0c;读操作分发到对应的服务器 &#xff08;slave&#xff09;&#xff0c;写操作分发到对应的服务器&#xff08;master&#xff09; ① M-S (主从) 架构下&…

前端路径问题总结

1.相对路径 不以/开头 以当前资源的所在路径为出发点去找目标资源 语法: ./表示当前资源的路径 ../表示当前资源的上一层路径 缺点:不同位置,相对路径写法不同2.绝对路径 以固定的路径作为出发点作为目标资源,和当前资源所在路径没关系 语法:以/开头,不同的项目中,固定的路径…

【JavaScript】函数 ⑦ ( 函数定义方法 | 命名函数 | 函数表达式 )

文章目录 一、函数定义方法1、命名函数2、函数表达式3、函数表达式示例 一、函数定义方法 1、命名函数 定义函数的标准方式 就是 命名函数 , 也就是之前讲过的 声明函数 ; 函数 声明后 , 才能被调用 ; 声明函数的语法如下 : function functionName(parameters) { // 函数体 …

八数码问题——A*算法的应用(A-Star)

文章目录 1 问题描述2 启发式搜索3 A*算法3.1 参考网址3.2 是什么3.3 为什么A*算法适用于八数码问题3.4 A* 算法的基本框架 4 A* 算法如何解决八数码问题4.1 八数码状态的存储4.2 启发式函数4.3 构造目标状态元素位置的字典4.4 在二维列表中查找目标元素4.5 A* 算法主体4.6 路径…

第15届蓝桥STEMA测评真题剖析-2024年3月10日Scratch编程初中级组

[导读]&#xff1a;超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成&#xff0c;后续会不定期解读蓝桥杯真题&#xff0c;这是Scratch蓝桥杯真题解析第180讲。 第15届蓝桥第5次STEMA测评&#xff0c;这是2024年3月10日举办的STEMA&#xff0c;比赛仍然采取线上形式。这…

汽车EDI:如何与奔驰建立EDI连接?

梅赛德斯-奔驰是世界闻名的豪华汽车品牌&#xff0c;无论是技术实力还是历史底蕴都在全球汽车主机厂中居于领先位置。奔驰拥有多种车型&#xff0c;多元化的产品布局不仅满足了不同用户画像的需求&#xff0c;也对其供应链体系有着极大的考验。 本文将为大家介绍梅赛德斯-奔驰乘…

Hadoop-HDFS

资料来源&#xff1a;尚硅谷-Hadoop 一、HDFS 概述 1.1 HDFS 产出背景及定义 1.1.1 HDFS 产生背景 随着数据量越来越大&#xff0c;在一个服务器上存不下所有的数据&#xff0c;那么就分配到更多的服务器管理的磁盘中&#xff0c;但是不方便管理和维护&#xff0c;迫切需要…

k8s存储卷 PV与PVC 理论学习

介绍 存储的管理是一个与计算实例的管理完全不同的问题。PersistentVolume 子系统为用户和管理员提供了一组 API&#xff0c;将存储如何制备的细节从其如何被使用中抽象出来。为了实现这点&#xff0c;我们引入了两个新的 API 资源&#xff1a;PersistentVolume 和 Persistent…

域名如何端口映射?

域名端口映射是一种重要的网络技术&#xff0c;它可以实现不同设备之间的远程通信。在全球互联网的背景下&#xff0c;人们之间的通信变得非常便捷&#xff0c;但随之而来的问题是如何有效地实现设备之间的互联互通。域名端口映射正是为了解决这个问题而出现的。 天联组网 天联…

【蓝桥杯选拔赛真题55】C++最长路线 第十四届蓝桥杯青少年创意编程大赛 算法思维 C++编程选拔赛真题解

目录 C最长路线 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 七、推荐资料 C最长路线 第十四届蓝桥杯青少年创意编程大赛C选拔赛真题 一、题目要求 1、编程实现 有一个N*M的矩阵&#xff0c;且矩阵…

vulnhub----natraj靶机

文章目录 一.信息收集1.网段探测2.端口扫描3.版本服务探测4.漏扫5.目录扫描 二.漏洞利用1.分析信息2..fuzz工具 三.getshell四.提权六.nmap提权 一.信息收集 1.网段探测 因为使用的是VMware&#xff0c;靶机的IP地址是192.168.9.84 ┌──(root㉿kali)-[~/kali/vulnhub] └─…

案例:非功能性需求的设计

在咨询中看到很多项目组对于非功能性需求没有做设计&#xff0c;很多项目组在设计文档中仅仅是把非功能性需求的描述拷贝到设计文档的非功能性章节。因此特地设计了两个简单的需求给大家参考&#xff0c;希望能够引导设计人员重视非功能性需求的设计。

55555555555555

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和…

QoS特性详解

​什么是QOS QoS(Quality of Service)是服务质量的简称,是指网络向特定流量提供特定的服务的能力。QoS可以确保关键业务的流畅运行,提高网络资源利用率,并保障网络安全。 常见网络设备QoS特性: 思科交换机: 支持基于策略的QoS(PBR)和基于类的QoS(CBQoS)。 PBR: 基于源I…

ubuntu更换国内镜像源,下载增速

方法一&#xff1a;通过脚本更换源 1.备份原来的源 sudo cp /etc/apt/sources.list /etc/apt/sources_init.list 将原来的源保留一下&#xff0c;以后想用还可以继续用 2.更换源 sudo gedit /etc/apt/sources.list 使用gedit打开文档&#xff0c;将下面的阿里源复制进去&am…

每日五道java面试题之ZooKeeper篇(一)

目录&#xff1a; 第一题. ZooKeeper 是什么&#xff1f;第二题. Zookeeper 文件系统第三题. Zookeeper 怎么保证主从节点的状态同步&#xff1f;第四题. 四种类型的数据节点 Znode第五题 . Zookeeper Watcher 机制 – 数据变更通知 第一题. ZooKeeper 是什么&#xff1f; Zoo…