prompt 工程案例

目录

prompt 工程是什么?

案例

vllm 推理加速框架


prompt 工程是什么?

prompt:提示词,也就是我们使用网页版输入给大模型的内容就叫 prompt,那什么是 prompt 工程呢?

简单理解其实就是利用编写的 prompt 去让大模型完成我们想要完成的任务,一般网页版本的都是多轮对话,通过多轮对话完成想要实现的事情也是一种 prompt 的使用;

另外一种是在实际业务中的使用,实际业务中到底怎么使用 prompt 呢?

prompt 工程 = prompt + 算法,这里的算法并不是指什么高升算法,是指通过编程解析大模型的输出,以及结合一些工具预处理文本这方面的编程代码。

prompt 入门门槛我觉得比较低,网上随便找资料大概都知道编写模版套路,但效果得结合实际业务情况调优好几天,有些还得通过编程进行辅助,比如预处理工具,提取地名啥的,匹配标签啥的,再去输入给大模型。

总结来说入门低,但要想在业务中用好,也没那么容易。

案例

我找了一个案例来说明下完整的 prompt 工程到底是在干啥,

模型:qwen-7b-chat

显存:24G

数据,专业描述的文本,还有对应的 label,

任务:通过编写 prompt ,传入专业列表,让大模型去判断是哪个专业

评判标准:其实就是文本分类任务,已经有数据标注了,让大模型预测出来后,计算准确率就可以评判效果好不好

数据链接:https://pan.baidu.com/s/1EvvNSWb9RXQm4TqHeg52fA 
提取码:2jh3 

链接:https://pan.baidu.com/s/1fdNsI35eiQAPsiIDeaTsAQ 
提取码:6mem 

直接给代码:

import pandas as pd
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import time


# 加载词表,模型,配置
tokenizer = AutoTokenizer.from_pretrained("/root/autodl-tmp",
                                          trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("/root/autodl-tmp",
                                             device_map="auto",
                                             trust_remote_code=True).eval()
model.generation_config = GenerationConfig.from_pretrained("/root/autodl-tmp",
                                                           trust_remote_code=True,
                                                           temperature=0.6)  # 可指定不同的生成长度、top_p等相关超参

def prompt_predit(content, labels):
    """prompt 预测 content 属于哪个类别"""
    prompt = f"""【学科分类解析】 
角色设定:
作为一名资深学者,对各个专业有着深入的了解,擅长通过描述精准判断出是哪一个专业,你的任务是从给定的专业列表中找出与描述最相关的10个专业。
 
已知条件:
[描述]: {content} 
[专业列表]: {labels} 

决策规则:
1. 专业必须来源于[专业列表]列表; 
2. 描述中的专业名词是否指向特定的专业,例如:“数据库=》计算机科学与技术”;
3. 从描述中抽取出关键专业术语,对比`[专业列表]`内的专业名称及其涵盖范围,寻找紧密相关的匹配项。

要求: 
- 请直接输出专业,无需解释说明; 
- 不得拒绝回答;
- 当描述中明确指向某个特定专业时,优先选择该专业;
- 若描述较为模糊或包含多个专业元素,需根据专业知识和经验作出最佳推断。

输出格式严格按照列表格式输出:
[专业1, 专业2, 专业3......] 
"""
    response, history = model.chat(tokenizer, prompt, history=None)
    return response.replace('\n', '').replace(' ', '')


if __name__ == '__main__':
    data = pd.read_csv('../output/classfield_data.csv')
    data = data.head(100)
    with open('../data/分类提取/labels_all.txt', 'r', encoding='utf8') as f:
        labels = f.readlines()

    res = []
    start_time = time.time()
    for index, row in data.iterrows():
        content = row['content']
        label = row['label']
        print(f'---------- {index + 1} / {len(data)} -----------')
        print(f'当前 content:{content} 正确 label:{label}')
        try:
            response = prompt_predit(content, labels)
        except Exception as e:
            response = str(e)
            print(f'解析错误:', response)
        print(f'预测结果:', '=>', response)
        res.append(response)

    data['llm_res'] = res
    # data['correct'] = (data['llm_res'] == data['label'])
    data['correct'] = data.apply(lambda row: True if row['label'] in row['llm_res'] else False, axis=1)
    print(f'预测正确率:', round(sum(data['correct']) / len(data) * 100, 2))
    data.to_excel('../output/classfield_data_predit.xlsx', index=False)

    end_time = time.time()
    print(f'用时:{end_time - start_time}')

这是最简单可以说明什么是 prompt 工程的案例,下面来讲一下思路。

1、加载模型

2、读入要处理的数据

3、把要传递给大模型的数据拿出来(content,labels)

4、调用大模型,prompt 编写好再去调用

5、如果需要,需要单独编写解析大模型返回的解析结果

6、最后保存所有结果

以上就是 prompt 工程整体流程,可以看出流程还是挺简单的,但想要想过真的没那么容易,有几方面:

1、不同模型,想通 prompt 效果不一样

2、不同词语描述,效果也不一样

3、哪怕改一个字,效果也会不一样

所以 prompt 要说什么技巧套路,我觉得有点扯淡,基本模版的技巧大家看了都会,但想要效果好得不停地调。

而且评判的数据挺重要的,就像我这个需求应该是分类任务对吧,那结果应该有一个,对就对,不对就不对,我调了几版 prompt ,最好的准确率是 39%,就去数据及理由,有些数据光是人去判断都不太好判断,或是有歧义的,更别说模型了,例如

content:20012014年对青海省主要水体中外来鱼类组成、分布和生态习性进行了系统调查。野外调查采集到外来鱼类30种,隶属6目12科25属,已建群外来鱼类16种。其中,黄河水系拥有的外来鱼类最多,共26种;长江上游有4种,为该河段首次记录;可鲁克湖12种,是内陆水体中外来鱼类最多的水域。结合历史文献记录,截至2013年,全省记录外来鱼类7目13科31属36种,已远超土著鱼类物种数(50种和亚种)的一半。调查分析发现外来鱼类呈现数量持续增多、分布范围向高海拔扩张的趋势。已建群外来鱼类主要是分布于我国东部平原地区的广布型物种。虹鳟( Oncorhynchus myskiss)是代表性外来种,现已在黄河上游干流部分河段形成自然繁殖群体,其食物组成包括水生无脊椎动物和高原鳅等土著鱼类。建立水产种质资源保护区和开展外来鱼类影响研究是防控高原地区外来鱼类的必要措施。 

正确 label:地理学

这段文本大家可以看看觉得他是在描述什么专业,我看了后觉得跟水产有关,大模型预测结果也是水产:

预测结果: => [水产|根据描述中提到的“外来鱼类”、“黄河水系拥有最多外来鱼类”、“已在黄河上游干流部分河段形成自然繁殖群体”等内容,可以推断出描述涉及的是水产专业。]

再去看数据标注的答案,摸不着头脑,可能从描述看最相关的水产,其次再是地理学之类的,

所以我改了 prompt ,选出10 个专业,只要 label 再里面就算对,准确率直接就 67 了。

所以标注的数据也挺重要的。

vllm 推理加速框架

上面我们通过一个最基本的案例明白了什么是 prompt 工程,现在来看一个框架 vllm ,是推理加速用的,意思就是说加速模型生成的速度。

把上面的代码改为 vllm 框架,改用批次,最大化利用 gpu 效率,利用 1000 条来测试一下速度有多少提升

from vllm import LLM, SamplingParams
import os
import time
import pandas as pd


os.environ['CUDA_VISIBLE_DEVICES'] = '0'
model_path = "/root/autodl-tmp"
llm = LLM(model=model_path, trust_remote_code=True, tokenizer=model_path, tokenizer_mode='slow', tensor_parallel_size=1)
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)


def batch_prompt(cur_batch_data):
    prompts = []
    for index, row in cur_batch_data.iterrows():
        content = row['content']
        prompt = f"""【学科分类解析】 
角色设定:
作为一名资深学者,对各个专业有着深入的了解,擅长通过描述精准判断出是哪一个专业,你的任务是从给定的专业列表中找出与描述最相关的个专业。

已知条件:
[描述]: {content} 
[专业列表]: {labels} 

决策规则:
1. 专业必须来源于[专业列表]列表; 
2. 描述中的专业名词是否指向特定的专业,例如:“数据库=》计算机科学与技术”;
3. 从描述中抽取出关键专业术语,对比`[专业列表]`内的专业名称及其涵盖范围,寻找紧密相关的匹配项。

要求: 
- 请直接输出专业,无需解释说明; 
- 不得拒绝回答;
- 当描述中明确指向某个特定专业时,优先选择该专业;
- 若描述较为模糊或包含多个专业元素,需根据专业知识和经验作出最佳推断。

输出:
[专业] 
"""
        prompts.append(prompt)

    return prompts


if __name__ == '__main__':
    data = pd.read_csv('../output/classfield_data.csv')
    data = data.head(1000)
    with open('../data/分类提取/labels_all.txt', 'r', encoding='utf8') as f:
        labels = f.readlines()

    global_time = 0
    batch_size = 32
    res = []
    for i in range(0, len(data), batch_size):
        cur_start_time = time.time()
        cur_batch_data = data[i:i + batch_size]
        cur_batch_prompt = batch_prompt(cur_batch_data)
        outputs = llm.generate(cur_batch_prompt, sampling_params)

        for output in outputs:
            prompt = output.prompt
            generated_text = output.outputs[0].text
            res.append(generated_text)

        cur_end_time = time.time()
        global_time += cur_end_time - cur_start_time
        print(f'当前批次用时 {cur_end_time - cur_start_time}   目前已使用使用时间 {global_time}   进度 {i + batch_size}')

    data['llm_res'] = res
    # data['correct'] = (data['llm_res'] == data['label'])
    data['correct'] = data.apply(lambda row: True if row['label'] in row['llm_res'] else False, axis=1)
    print(f'预测正确率:', round(sum(data['correct']) / len(data) * 100, 2))
    data.to_excel('../output/classfield_data_predit.xlsx', index=False)
    print(f'总用时:{global_time}')

vllm 用时

之前的代码用时:

可以看出,真的能像网上说的那样提速 2 倍左右,但准确率下降了,我把输出打印出来看,发现是输出内容没有按照之前的来了,说明 vllm 会对输出有影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/516940.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据仓库面试总结

文章目录 1.什么是数据仓库?2.ETL是什么?3.数据仓库和数据库的区别(OLTP和OLAP的区别)4.数据仓库和数据集市的区别5.维度分析5.1 什么是维度?5.2什么是指标? 6.什么是数仓建模?7.事实表7.维度表…

基于springboot实现社区医院信息平台系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现社区医院信息平台系统演示 摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了社区医院信息平台的开发全过程。通过分析社区医院信息平台管理的不足,创建了一个计算机管理社区医院信…

gpt国内怎么用?最新版本来了

claude 3 opus面世后,这几天已经有许多应用,而其精确以及从不偷懒(截止到2024年3月11日还没有偷懒)的个性,也使得我们可以用它来首次完成各种需要多轮对话的尝试。 今天我们想要进行的一项尝试就是—— 如何从一个不知…

《搜广推算法指南》(2024版) 重磅发布!

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。 结合…

CSS层叠样式表学习(字体属性)

(大家好,今天我们将继续来学习CSS字体属性的相关知识,大家可以在评论区进行互动答疑哦~加油!💕) 三、CSS字体属性 CSS Fonts(字体)属性用于定义字体系列、大小,粗细,和文字样式(如斜…

Linux云计算之网络基础8——IPV6和常用网络服务

目录 一、IPV6基础 IPV6详解 IPv6数据报的基本首部 IPv6数据报的扩展首部 IPv6地址的表示方法 IPv6地址分类 网际控制报文协议ICMPv6 二、cisco基于IPV6的配置 cisco基于IPV6的配置步骤 模拟配置 三、HTML基础介绍 文档的结构 动手操作一下 四、常用网络服务介绍…

【Canvas技法】图解绘制圆弧的重要函数 arc(x,y,r,startAngle,endAngle,clockWise)

【一图释疑】 【绘制上图用代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>Html5/Canvas中绘制圆弧的重要函数 arc(x,y,r,startA…

[C#]OpenCvSharp实现直方图均衡化全局直方图局部直方图自适应直方图

【什么是直方图均衡化】 直方图均衡化是一种简单而有效的图像处理技术&#xff0c;它旨在改善图像的视觉效果&#xff0c;使图像变得更加清晰和对比度更高。其核心原理是将原始图像的灰度直方图从可能较为集中的某个灰度区间转变为在全部灰度范围内的均匀分布。通过这种方法&a…

【opencv】教程代码 —video(2) optical_flow (稀疏光流、稠密光流)

1. optical_flow.cpp 稀疏光流 #include <iostream> // 引入输入输出流库 #include <opencv2/core.hpp> // 引入OpenCV的核心功能模块 #include <opencv2/highgui.hpp> // 引入OpenCV的高级GUI模块&#xff0c;提供显示图像的功能 #include <opencv2/imgp…

VSCode SSH 连接 Could not establish connection to “XXX“: spawn UNKNOWN.

1. 确认问题&#xff1a; 拉取vscode终端&#xff1a;快捷键 ctrl(数字1旁边那个) 输入&#xff1a;ssh -V 2. 解决方法 2.1 找到本地SSH 位置 默认本地路径&#xff1a; C:\Windows\System32\OpenSSH 2.2 找到要修改的位置 进入 ssh 插件的设置&#xff08;可以通过在插…

基于springboot实现社区医院信息平台系统项目【项目源码+论文说明】

基于springboot实现社区医院信息平台系统演示 摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了社区医院信息平台的开发全过程。通过分析社区医院信息平台管理的不足&#xff0c;创建了一个计算机管理社区医院信…

实现 select 中嵌套 tree 外加搜索

实现 select 中嵌套 tree 外加搜索 参考地址实现地址 代码 <el-form-item label"考核人员" prop"userIdArr" v-if"title 发起考核"><el-popover v-model"popoverVisible" placement"bottom" trigger"cli…

MySQL-单行函数:数值函数、字符串函数、日期和时间函数、流程控制函数、加密与解密函数、MySQL信息函数、其他函数、单行函数练习

1.数值函数 1.1 基本的操作 SELECT ABS(-123),ABS(32),SIGN(-23),SIGN(43),PI(),CEIL(32.32),CEILING(-43.23),FLOOR(32.32), FLOOR(-43.23),MOD(12,5),12 MOD 5,12 % 5 FROM DUAL;1.2 取随机数 SELECT RAND(),RAND(),RAND(10),RAND(10),RAND(-1),RAND(-1) FROM DUAL;1.3 四…

见证历史:Quantinuum与微软取得突破性进展,开启了可靠量子计算的新时代!

Quantinuum与微软的合作取得了重大突破&#xff0c;将可靠量子计算带入了新的时代。他们结合了Quantinuum的System Model H2量子计算机和微软创新的量子比特虚拟化系统&#xff0c;在逻辑量子比特领域取得了800倍于物理电路错误率的突破。这一创新不仅影响深远&#xff0c;加速…

Spring Boot 整合 RabbitMQ 实现延迟消息

关于 RabbitMQ 消息队列&#xff08;Message Queuing&#xff0c;简写为 MQ&#xff09;最初是为了解决金融行业的特定业务需求而产生的。慢慢的&#xff0c;MQ 被应用到了更多的领域&#xff0c;然而商业 MQ 高昂的价格让很多初创公司望而却步&#xff0c;于是 AMQP&#xff0…

点亮创意:ChatGPT如何搭桥DALL-E图像编辑新纪元

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

金融中的数学知识

随机偏微分方程相比普通偏微分方程具有额外的随机项&#xff0c;反映了其描述的现象具有随机性质

在ArcGIS Pro中优雅的制作荧光图

最近在网上看到了荧光图&#xff0c;觉得挺帅气&#xff0c;去网上查询了怎么制作荧光图&#xff0c;发现大部分都是QGIS的教程&#xff0c;作为ArcGIS的死忠用户&#xff0c;决定在ArcGIS Pro中实现&#xff0c;其实挺简单的。 1、软件&#xff1a;ArcGIS Pro3.0 2、点数据&a…

Linux的软链接和硬链接

1、软链接 概念&#xff1a;给文件创建一个快捷方式&#xff0c;依赖原文件&#xff0c;和普通文件没有区别。 特性&#xff1a; 可以给存在的文件或目录创建软链接可以给不存在的文件或目录创建软链接可以跨文件系统创建软链接删除软链接不影响原文件、删除原文件会导致软链…

【Java基础】Java基础知识整合

文章目录 1. 转义字符2. 变量2.1 字符串与整型相加2.2 byte和short的区别2.3 float和double的区别2.4 char类型2.5 boolean类型2.6 自动类型转换及运算2.7 强制类型转换2.8 String的转换2.9 除法运算2.10 取模规则 3. 自增4. 逻辑运算符5. 赋值运算 6. 三元运算符&#xff1a;7…