见证历史:Quantinuum与微软取得突破性进展,开启了可靠量子计算的新时代!

20240404152634

Quantinuum与微软的合作取得了重大突破,将可靠量子计算带入了新的时代。他们结合了Quantinuum的System Model H2量子计算机和微软创新的量子比特虚拟化系统,在逻辑量子比特领域取得了800倍于物理电路错误率的突破。这一创新不仅影响深远,加速了量子计算的进展,也挑战了传统对大规模可靠量子计算时间表的认知。

这一工作的主要创新点包括:可靠逻辑量子比特的实现,实时量子错误校正协议的开发以及对量子计算硬件架构的优化。这一突破解决了量子计算中关键的错误校正问题,为量子计算走向实用化提供了关键支持。接下来我们具体解读一下该工作的重大意义。

​容错性:量子计算的巨大挑战

量子计算机的概念由来已久,近些年也是成果不断。谷歌于2019年10月23日宣布取得了量子霸权。他们构建了一台计算机,能够在200秒内完成一个计算,而这个计算对于最快的超级计算机来说需要大约10,000年。但是,你可能会好奇,谷歌都已经宣布量子霸权了,量子计算不早就很成功了吗?量子霸权其实只是一种宣传策略,实际情况远非你以为的那样。

量子计算机基于量子纠缠态,量子纠缠神秘,迷人,又强大,是量子计算的根基。然而,量子纠缠态功能强大的另一面是它非常脆弱,要想维护这一纠缠态需要十分苛刻的物理条件,如果还想在其基础上进行计算同时又不破坏这一纠缠态,更是难上加难。因此,实际上我们要给谷歌2019年的量子霸权加上一系列的限定条件:

  • 在苛刻的物理条件下,很短暂的时间内,特殊的场景下实现了量子霸权。

距离真正可以商用,还遥远的很啊!这里关键的问题就是让量子比特变得更加稳定,正如谷歌在2021年的一篇文章中指出的那样,量子设备的发展方向就是降低量子比特的错误率!

20240404153623

2023年2月,谷歌团队宣称:

目前,我们第三代Sycamore处理器 上的量子比特的错误率通常为 1/10,000 到 1/100。通过我们和其他人的工作,我们了解到开发大规模量子计算机需要更低的错误率。我们需要 (1/10)^9到 (1/10)^6范围内的错误率来运行能够解决工业相关问题的量子电路。

1/100的错误率意味着什么?每运行100次计算就可能宕机一次,这样的量子计算机还是太脆弱了。

逻辑比特:另辟蹊径​

量子计算使用量子比特来存储和处理信息。然而,当今的量子比特容易出错,这限制了它们的实用性以及所有嘈杂的中型量子计算机的实用性。有两种方法可以减少这些错误:

  • 提高物理量子比特及其操作的质量。
  • 利用先进的技术将多个物理量子位组合成更可靠的虚拟量子位,通常称为逻辑比特

仅仅增加高错误率的物理量子比特的数量(而不改善错误率)是徒劳的,因为这样做并不会导致量子计算机比现有的版本更强大。相反,当具有足够操作质量的物理量子比特与专门的编排和诊断系统一起使用以启用虚拟量子比特时,增加物理量子比特的数量才能产生功能强大、容错能力强的量子计算机,能够执行更长时间、更复杂的计算。

Quantinuum与微软的合作就采用了这样虚拟量子比特的方式。(谷歌又被超越了?😟)

强强联合

Quantinuum 是一家专注于量子计算的公司,Quantinuum 的离子阱量子比特具有高保真度、完全连接性和中途测量等特点,多项已发布的基准测试表明,Quantinuum 在获得最佳量子体积方面表现出色。其 H 系列离子阱量子比特具有出色的两比特门保真度(99.8%)。不过这个保真度对于一个可以商用的量子计算机来说依然是太低了!

2019年开始微软就与 Quantinuum 合作,帮助量子开发人员在离子阱量子比特技术上编写和运行自己的量子代码。通过将微软的量子比特虚拟化系统应用于 Quantinuum 的硬件,这一次,已经成功地运行了14,000个独立的量子电路实例,而没有出现任何错误。

借助我们的量子比特虚拟化系统,我们能够仅从 Quantinuum 机器上可用的 32 个物理量子比特中的 30 个创建四个高度可靠的逻辑量子比特。纠缠时,这些逻辑量子比特的电路错误率为 10-5或 0.00001,这意味着它们每 100,000 次运行只会出错一次。这比从纠缠物理量子比特测得的 8×10 -3或 0.008 的电路错误率提高了 800 倍。

20240404160439

每 100,000 次运行只会出错一次,这已经是相当不错的一个成绩了!这一错误率距离2023年提出的(1/10)^9到 (1/10)^6范围内的错误率已经非常接近了!

展望未来

至此,我们确实可以展望一下商业可用量子计算机的出现了,难怪新闻报道说这一研究将会开启可靠量子计算的新时代~

Quantinuum公司宣称:2025年,我们将推出一款新的H系列量子计算机,Helios,它将发挥H系列的最佳优势,提高物理量子比特数量和物理保真度。这将使我们及我们的用户能够在更广泛的一组错误校正编码下降低阈值,并使该设备能够支持至少10个高度可靠的逻辑量子比特。短期内,借助由一百个可靠的逻辑量子比特驱动的混合超级计算机,我们相信组织将能够开始看到科学优势,并能够加速朝着人类所面临的一些最重要的问题的有价值的进展,例如模拟用于电池和氢燃料电池的材料或加速开发有意义的AI语言模型。长期来看,如果我们能够将可靠的逻辑量子比特扩展到接近1000个,我们将能够解锁最终可以改变商业世界的商业优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/516919.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot 整合 RabbitMQ 实现延迟消息

关于 RabbitMQ 消息队列(Message Queuing,简写为 MQ)最初是为了解决金融行业的特定业务需求而产生的。慢慢的,MQ 被应用到了更多的领域,然而商业 MQ 高昂的价格让很多初创公司望而却步,于是 AMQP&#xff0…

点亮创意:ChatGPT如何搭桥DALL-E图像编辑新纪元

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

金融中的数学知识

随机偏微分方程相比普通偏微分方程具有额外的随机项,反映了其描述的现象具有随机性质

在ArcGIS Pro中优雅的制作荧光图

最近在网上看到了荧光图,觉得挺帅气,去网上查询了怎么制作荧光图,发现大部分都是QGIS的教程,作为ArcGIS的死忠用户,决定在ArcGIS Pro中实现,其实挺简单的。 1、软件:ArcGIS Pro3.0 2、点数据&a…

Linux的软链接和硬链接

1、软链接 概念:给文件创建一个快捷方式,依赖原文件,和普通文件没有区别。 特性: 可以给存在的文件或目录创建软链接可以给不存在的文件或目录创建软链接可以跨文件系统创建软链接删除软链接不影响原文件、删除原文件会导致软链…

【Java基础】Java基础知识整合

文章目录 1. 转义字符2. 变量2.1 字符串与整型相加2.2 byte和short的区别2.3 float和double的区别2.4 char类型2.5 boolean类型2.6 自动类型转换及运算2.7 强制类型转换2.8 String的转换2.9 除法运算2.10 取模规则 3. 自增4. 逻辑运算符5. 赋值运算 6. 三元运算符:7…

一文介绍回归和分类的本质区别 !!

文章目录 前言 1、回归和分类的本质 (1)回归(Regression)的本质 (2)分类(Classification)的本质 2、回归和分类的原理 (1)回归(Regression&#x…

力扣 115. 不同的子序列

题目来源:https://leetcode.cn/problems/distinct-subsequences/description/ C题解:动态规划。 dp[i][j] 表示 t[0] ~ t[i-1] 在 s[0] ~ s[j-1] 中出现的个数。因为 t 短,所以把 t 放在外循环。 当 t[i-1] 不等于 s[j-1] 时,s[…

认识 Redis 与 分布式

Redis 官网页面 Redis官网链接 Redis 的简介 Redis 是一个在内存中存储数据的中间件 一方面用于作为数据库,另一方面用于作为数据缓存,适用于分布式系统中 Redis 基于网络,进行进程间通信,把自己内存中的变量给别的进程&#xf…

深度解析GPT中的Tokenizer

继学习完深度解析大语言模型中的词向量后,让我们继续学习大语言模型中另外几个重要概念:token(词元)、tokenization(词元化)、tokenizer(词元生成器)。 在GPT模型中,toke…

【与C++的邂逅之旅】--- 内联函数 auto关键字 基于范围的for循环 nullptr

关注小庄 顿顿解馋૮(˶ᵔ ᵕ ᵔ˶)ა 博主专栏: 💡 与C的邂逅之旅 💡 数据结构之旅 上篇我们了解了函数重载和引用,我们继续学习有关C的一些小语法— 内联函数,auto关键字,基于范围的for循环以及 nullptr&…

设计模式——建造者模式03

工厂模式注重直接生产一个对象,而建造者模式 注重一个复杂对象是如何组成的(过程),在生产每个组件时,满足单一原则,实现了业务拆分。 设计模式,一定要敲代码理解 组件抽象 public interface …

02---webpack基础用法

01 entry打包的入口文件: 单入口entry是一个字符串:适用于单页面项目module.exports {entry:./src/index.js}多入口entry是一个对象module.exports {entry:{index:./src/index.js,app:./src/app.js}} 02 output打包的出口文件: 单入口配置module.ex…

【opencv】教程代码 —video(3) 视频背景剔除

bg_sub.cpp 这段代码的功能是把视频中的背景和前景分离,提取出前景的运动物体。根据用户选择的不同的模式,可以选择基于MOG2或者基于KNN的方法来进行背景减除。在处理每一帧图像的过程中,首先使用背景减除模型对图像帧进行处理,得…

RabbitMQ3.7.8集群分区(脑裂现象)模拟及恢复处置全场景测试

测试环境准备: MQ服务器集群地址,版本号为3.7.8: 管理控制台地址:http://173.101.4.6:15672/#/queues 集群状态 rabbitmqctl cluster_status 集群操作相关命令: 创建一个RabbitMQ集群涉及到如下步骤: 安装RabbitMQ: 在每台要在集…

JVM专题——类文件加载

本文部分内容节选自Java Guide和《深入理解Java虚拟机》, Java Guide地址: https://javaguide.cn/java/jvm/class-loading-process.html 🚀 基础(上) → 🚀 基础(中) → 🚀基础(下&a…

利用AI结合无极低码(免费版)快速实现接口开发教程,会sql即可,不需要编写编译代码

无极低码无代码写服务+AI实践 本次演示最简单的单表无代码增删改查发布服务功能,更复杂的多表操作,安全验证,多接口调用,自自动生成接口服务,生成二开代码,生成调用接口测试,一键生成管理界面多条件检索、修改、删除、查看、通用公共接口调用、通用无限级字典调用等后续…

【Linux】Ubuntu 文件权限管理

Linux 系统对文件的权限有着严格的控制,用于如果相对某个文件执行某种操作,必须具有对应的权限方可执行成功,这也是Linux有别于Windows的机制,也是基于这个权限机制,Linux可以有效防止病毒自我运行。因为运行的条件是必…

第二十三章 Git

一、Git Git 是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目。 Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件。 Git 与常用的版本控制工具 CVS, Subversion 等不同,它采用了分布式版…

前端三剑客 —— CSS ( 坐标问题 、定位问题和图片居中 )

前期内容回顾: 1.常见样式 text-shadow x轴 y轴 阴影的模糊程度 阴影的颜色 box-shadow border-radio 实现圆角 margin 内边距 padding 外边距 background 2.特殊样式 媒体查询:media 自定义字体:font-face { font-family:自定义名称&#…